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Evaluation of the Stress Intensity Factor for a Crack in Bimaterial Plate by
the Boundary Element Method
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Nomenclaure

X, ¥ : cartesian coordinates r ! boundary of the body
2a > crack length u; : displacements components
2w : plate width of first material at boundary
containing a crack : pj : tractions components
b : plate width of second material at boundary
t : plate thickness Uij, Pij:components of the tensors
E, : Young's modulus of first corresponding to the fundamental
material containing a crack solutions
E, : Young's modulus of second N : shape function
material n : Iocal coordinate
a : dimensionless inertia parameter J : Jacobian
(E,L/w't) L :length of crack tip element
B8 : dimensionless extensional rigidity G : shear modulus
(E;b/E,w) v :Poisson’s ratio
1, :inertia moment of area of second £ :3-4v in plane strain
material (3-v)/(1+v) in plane stress
Ki;,Ky :mode I and mode II stress I :normal stress of plate
intensity factors P : applied load )

F : correction factor for stress intensity & :normal strain

factor (F=Kv1 Jo .4 )
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1. INTRODUCTION

‘The use of composite materials as structural
components has inspired considerable research'
on the effect of flaws and imperfections on the
structural strength, The appearence of a flaw
or crack in material could lead to a mode of
failure where fracture occurs with nominal cross
-section stresses well below the material yield
stress, As the behavior of cracks in plates
composed of two different materials bonded
together is fundamental to the whole behavior
of composite materials, the problems of crack
in a bimaterial plate should be studied,

The boundary element methods have
considerable advantages for such problems since
cracks may be accurately modeled by
considering only the boundary of the problem
geometry, There are two classes of boundary
The
resolutions of
which is the
region of major importance in fracture
On the other hand, the direct
method produces a singular algebraic system for

element methods : indirect*® and direct, ™,
indirect method gives poor
stresses near the crack surface,

mechanics,

an idealized crack, The direct method is there-
fore commonly used for problems with cracks,
and we adopt it in the present work,

We have already described in the literature”
the application of boundary element method for
the prediction of crack growth in two
dimensional crack problems, based on sub-region
partitioning along crack lines,” and this ap-
proach is now extended to study the stress
intensity factors for a crack in two dimensional
plate, with crack running normal to a bimaterial
interface,

The simple analytic method is also presented
to obtain the stress intensity factors for a crack
It the
transformed section corresponding to an equi-
valent plate made of the second material

in bimaterial plate, is based on
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Numerical and analytic results are given for the
stress intensity factors of mode I for cracks
normal to interfacial boundary,

2. FORMULATION OF THE BOUNDARY
ELEMENT METHOD

the
equation for displacements at an interior point, s

In two-dimensional elasticity, integral
of a plane elastic region, R with boundary I
can be derived from Betti's theorem and the
solution to Kelvin's problem of the point load
in an infinite plane, This integral equation is

Somigliana’s identity, *

u(s)= [ Uiks, @P(QANQ) — [ Puls, Qu@dr(Q)
i

where u;(s) is the displacement vector at in-
Ui(Q).
displacements and tractions, and Ui;{s,Q), P
(s, Q)

respectively,

terior point,s p; (Q) are the boundary

are the displacements and tractions,
in the x: direction at boundary
point Q due to orthogonal unit loads in the x;
direction at s, "
Taking s—S(Ser),
limiting process results in the boundary integral

a boundary point by a

equation, which is an integral constant relating
boundary tractions to boundary displacements :

CASN(S)+ [ PS, QuiQ)art@)

= [U4s, QP(Qart@) )

Numerical solutions to the boundary integral
equations are found to discretizing over the
elements in terms of suitable algebraic functions
involving values at certain nodal pointsy
associated with the elements, The isoparametric
boundary element

represents the geometry,

displacement and tractions as polynomials :
x{n)=A+Bnp+Crf
u,(n)
p.(n)

x{n) = Nin)x/
u(n)= N{ph/

=A"+Bn+C'r
pdn)=Nin)p/
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Where N,(p),
functions of the intrinsic

£=1,2,3, are quadratic shape
coordinate given by

N.(v)=‘%n(v7—- 1)

Nz(’])""é‘ﬂ(’ﬁ'l)
N7} =1+ (1—19) {4)

If the boundary of a particular region is
represented by m elements and total 2m nodes,

Eq. (2) then becomes

Cul SNl SN+ Fiud 5% [ PSS QNG n)

=§p, 5% [ U484 QN Tn)dy 6

where S* is the ath node and dfe, £)is the
number of the fih node of the eth element,
Also, J{s) is the boundary Jacobian,

J{n)=dx/dn=(dNe(n)/dn (1=1,2)

Le.,

(6)

3. DETERMINATION OF THE STRESS
INTENSITY FACTOR

Modification needs to be made in the element
modeling to account for crack tip or other
singularities,
nodes, while essentially retaining standard basic
function{(Eq. 3). Specifically, for guadratic
the internal node is moved to the

We are going to use special

elements,
quarter~point position, as proposed by Henshell'"
and Barsoum, so that, for a crack tip
element of length L,

r =Ly

1E

{7)

u and p are quadratics in T 'and have

desirable Jr singularities, Moreover, the traction

may be given its correct 1/4T singularity on

elements within the material by using the

traction singular element, '*'
={(A'+By+C7%)/n {8)

Local displacements in the vicinity of the

crack tip are used to determine the stress
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For paints along a face of
the local
solutions for displacements normal to and tan-
gential to the crack face are

intensity factors,
a crack in two-dimensional region,

u=%— L cosg(k 1+25m‘0)
v—% ——sm—(lc+1 2005’0) {9)

where r is the small distance from the crack
tip, G is shearing modulus of elasticity and v
is Poisson's ratio, Here K; and K; are the
mode I and mode I stiress intensity factors,
and x=3-4y for plane strain and{3-v)/(l1+v)for
plane stress, By taking =% and r small in
Eq (9), we deduce thai on the ‘crack surface

adjacent to the crack tip, (Fig 1)

2G_

- 2w,
K k+1 L (4’“.' Uz)
2G_ [2x _
Ky= k+1‘/” (dua—u,) 9

where the points 2 and 3 are defined in Fig, 1

> (LA ¥ (L/4)

Fig. 1 Quarter-point crack tip element

We also adopt the simple analytic method to
obtain the stress intensity factors in bimaterial
plate, In stregth of materials, we can analyze
the stress of composite materials by using a
transformed section corresponding to an equi-
valent plate made of second material We ex-
tend this method to problems with cracks,

Consider a plate to be loaded in such a way
that the top and bottom of the plate are
subjected to a uniform displacement, (Fig. 3)
Since the moduli of elasticity E, and E, of two
the

expressions obtained for normal stress in each

materials in bimaterial plate are different,
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material will be
a=E¢
0=E.¢
e =a/a=0/E:
5=(E:/E1) o1 (1)

where o, and o0, are the stresses to be

acted in the first and second materials in
bimaterial plate,
The forces P, and P, exerted on the first

and second materials are iilustrated as follows,

P=P,+P;
=(2wt)ai + (2bt{E:/E o (12)
We note that the same force P, would be
exerted on an element of area E,/E, times of
the first material, (Fig, 2)

?P fp
Z\—Tﬁﬂzes T T
E=1 | E, :

/ /) : !

2a I % |

f/pa— A I R

] o
1 8 /‘1_ st 8 is
*’r-é e

Fig. 2 Transformed section corresponding to an equi-
valent plate

4. NUMERICAL RESULTS

the
problems of a crack in a two dimensional plate,
with to a
bimaterial interface,

Numerical results were obtained for

running perpendicular
The crack is of length 2a

the crack

and the boundary conditions are a uniform
vertical displacement of the top and bottom of
the plate,
quarter-point element with traction singularity for
the crack tip and

The problems were analyzed using

two elements adjoining

quadratic elements elsewhere, Crack tip element

A9
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The stress
the
displacement components on two pairs of points
{e.g. 2,3 in Fig.1) on the crack tip,

The first case analyzed was a sandwiched

to crack length ratio, L/a is 0. 1.
intensity factors are calculated using

layer containing a center crack normal to the
interface as shown in Fig 3. This problem is
doubly symmetric and only one-quarter of the
plate is discretized, The boundary element mesh
is also shown in Fig 3, The number of bound-

| %
1
E : —A4 ™~ | first material ,E,
3 2 2 g secod mateterial E, P
] a g
Py
5 7 é
4 2w=20pb=25
H -
A
° ! internal node
bp n

cracktip ~

Crack length, a )

Fig. 3 Boundary element discretization for center cracl
in bimaterial plate (Model A)

ary elements is 16 for first material containing
10 for The
normalized stress intensity factors from equation
(10) are plotted against the ratio a/w for
various E,/E, in Fig. 4. The plotted results are
compared w4, the pertubation results of Isida'"’
It is clear from Fig, 4 that the results obtained

a crack and second material,

using the boundary element method are quite
accurate (less than 3%) for all a/W values up
to 0.8

The second case analyzed was the problems
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Fig. 4 Normalized K. vs. crack length for center
crack in bimaterial plate (Model A)
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Fig. 5 Normalized K. vs. crack length for center
crack in bimaterial plate (Model B)

of the center and edge cracks normal to a
material interface in bimaterial plate as shown
in Figs.5 and 6.
symmetric about the crack axis and only one-

The problems are singly

half of the plate is discretized, The number of
is 22 for
containing a crack and 10 for second material,

boundary elements first material

The normalized stress intensity factors at the
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Fig. 6 Normalized K, vs. crack length for center

crack in bimaterial plate (Model C)
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Model C

Modulus of elasticity, E./E,
Fig. 7 Normalized K. vs. modulus of elasticity for

each model

nearest crack tip, B from the interface are
illustrated in Figs.5 and 6, The dashed lines
given in Figs, 5 and 6 are the collocation results
of Idida'' and Gross el al, '™ respectively for
E./E =1
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Fig. 8 Normalized K, crack length for model A

by the simple

VS,
analytic method

Extensional rigidity E;b/E.W
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Crack length, a/w
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Fig. 9 Extensional rigidity vs. crack length diagram

for an analysis of K, with 3% errors by the
simple analytic method (Model A)

Fig. 7 shows the variations of the stress
intensity factors with Young's modulus ratio E,/E
. for each case, As Fig 7 shows, the addition
of a stiffer second material would cause a drop
in the stress intensity factor, The stress
intensity factor decreases very fast until E,/E,
gets lower than about 4,

The simple analytic method is applied to each

case, In Fig 8 are graphs of the stress intensity

A9 A2z (1992, 69)
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Fig.
for an analysis of K, with 3% errors by
the simple analytic method (Model B)
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Fig. 11 Extensional rigidity vs. crack length diagram
for an analysis of K, with 3% errors by
the simple analytic method (Model C)

factors obtained by the analytic method for the
The plotted
compared with the perturbation results of Isida, "

'

first case, results are also
Fig.8 shows that the accuracy of simple
analytic results has been decreased as the
values of a/w are increased, We therefore
described the applicable range of this method

with the values of a/w in Fig 9, The plotted
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Fig. 12 Normalized K, for a crack across a second
material in a plate subjected to a uniaxial
tensile stress by the simple analytic method

results have a discrepancy at most 3% with
Isida’'s and boundary element ones, Fig 9 shows
that the applicable range of the simple analytic
method to determine the stress intensity factor
for a crack in bimaterial plate mainly depends

on extensional rigidity, 5. The change caused
by varying inertia parameter, « is insignificant,
The results for the second case are also given
in Figs, 10 and 11,

Moreover, this method can be applied to a
crack across the second material in a sheet,
The stress intensity factors are plotted against
the extensional rigidity in Fig 12. The dashed
line is the theoretical result of Sander and
Grief, '" These results have 5% discrepancies
with a theoretical result,

5. CONCLUSIONS

(1) The boundary element method can solve

a crack in bimaterial plate to engineering

accuracy, Isoparametric quadratic element with
the displacement and traction singularities was
found to enhance the accuracy of the stress

intensity factor with only few boundary
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elements,

(2) The simple analytic method based on the
transformed section corresponding to an equi-
valent plate made of second material is very
effective method for determining the stress
intensity factor at crack in bimaterial plate, but
which

engineering application,

involves somewhat limitation for
(3) If a sheet containing a crack is adjoined
to a second material having a higher elastic
modulus, the stress intensity factor decreases
markedly until Young's modulus ratio, E,/E, is

about 4,
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