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A Study on the Robust Digital Tracking Control of a Robot with Flexible Joints
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I.INTRODUCTION

it
is necessary to

In certain applications of industrial robots,
that it
accurately track a moving reference point, that

was pointed out
is, to track a ramp reference input with zero

steady state error. In this paper, experimental
results of an actual implementation of a robust
digital tracking controller of a geared robotic
manipulator are presented, It is known (Brady,
1989; Spong, 1986)
create the problems of joint flexibility, backlash

and friction,

that gears in the robots

speed limitation, and dominance
of rotor inertia,
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Nonlinear control system, Robots, Limit cycles, Coulomb friction,

One of the most widely used methods for
designing a tracking controller, continuous and
discrete, for a robotic manipulator is the PID
controller coupled with an additional feedforward
The method,

the following serious sho-

loop for velocity compensation,
however, has
(a) The feedforward compensation is
which is based
Since the
actual system parameters are always different
from those of the model,

rtcomings :
basically an open loop control,
on an exact mathematical model
there will always be
(b) When high
ratio gears are used in a manipulator drive

a nonzero steady state error,

system, there is a substantial amount of spring
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effects in the system, In this case, a drive
must be modeled by at least a fourth order
differential equation, Since the PID controller
uses only two state (position and velocity)
variables in the feedback loop, the resulting
controller is basically a partial state variable
feedback controller, As such, it is, in general,
rather difficult to obtain a satisfactory response,
(c) The Coulomb frictions, which exist in most
are usually ignored in
the

shows that the Coulomb frictions play a critical

of robotic manipulators,

controller design, However, investigation

role in the control system, The nonlinear
frictions cause a nonzero steady state error.
If the controller gain is increased to reduce the
steady state error, then the system often goes
into a limit cycle oscillation,
the Coulomb friction, even when the system

gain is small, a closed

exhibits a limit cycle,

loop system often
To eliminate or at least
it is,
necessary to feedback the entire

reduce the magnitude of the limit cycle,
in general,
state variables,

The that the
interactions between the joints as well as the

investigation further shows

nonlinear effects due to Coriolis and centrifugal
forces are often negligible compared to the
The
same conclusions were also reported by other
(Good, 1985; Sweet, 1985;

Vidyasagar, 1987). Thus, in this study, the joint
drive systems are decoupled, and each joint is

spring effects and the Coulomb frictions,

investigators

investigated separately. The nonlinear effects
due to the Coriolis and centrifugal forces are
also ignored, However the spring effects and
Coulomb frictions are fully incorporated into a
fourth order system model,

The effective inertia of each joint, of course,
is dependent on the geometric configuration of
the manipulator at each instance and also on
the mass of the object grasped by the

manipulator, The maximum value is used for

A9
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this The
inertia value during an actual

the in investigation,

variation of

load inertia
operation of a manipulator is accommodated by
designing a controller which is robust with re-
spect to the variation in the load inertia,
The Coulomb friction is discontinuous when
the velocity is zero, Thus the manipulator sys-
tem under consideration cannot be linearized.
Also, when a digital controller is implemented,
the nonlinear system cannot be represented as
a nonlinear discrete system, It is, thus, neces-
sary to consider the system as a continuous

system driven by discrete control function,

In order to track a ramp input with zero
steady state error, is first
augmented by two additional

integrators,

the system
discrete error
under

In the manipulator

consideration, only the angular position is
measured, Although a tachometer could have
been used to measure the velocity, it was not
implemented because of the lack of physical
space on the manipulator, To compensate for
the missing three state variables, three delayed
values of the output(angular position) variable
as well as the variable itself are used in the
The feedback gain

parameters are obtained by minimizing a quad-

feedback controller,

ratic cost functional for the discrete linear sys-
tem which is obtained by discretizing the con-
tinuous system with the nonlinearities removed,
Then the resulting digital controller is applied
to the original continuous nonlinear system. This
often results in the actual closed loop system
going the
describing function method for the hybrid system

into a limit cycle, In this case,
is developed and is applied to readjust the
feedback parameters so that the limit cycle is
eliminated,

The controller designed by the above method
tracks ramp input functions with zero steady
It is robust in the sense that as

long as the closed loop system remains stable,

state error.



the response tracks the input with zero steady
state error for any variations in the system
parameters, This is also true for any
disturbances such as the gravitational pull as
long as the disturbance is either a step or ramp
function,

I. MODEL

The manipulator under consideration is
represented by the diagram shown in Fig, 1, In
the figure, F. and F represént the Coulomb
frictions and T. represents the disturbance
torque due to the gravitational pull The latter

Fig. 1 Robot Drive System

is regarded as an external disturbances to the
system, u is the control input to the amplifier
for driving the motor, The above drive system
can be modeled by the block diagram shown
in Fig, 2.

Fig. 2 Block Diagram of the Robot Drive System

In the above figure, the variables are defined
as follows;

u :input voltage to the amplifier

V. :the voltage applied to the motor

Ts : disturbance torque due to the gravitational
pull

v : potentiometer output of position
measurement

0 :load position angle

w :load angular vélocity
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8. : motor shaft angle

w, : motor shaft angular velocity

The motor inductance and the gear backlash
are experimentally found to be insignificant
(Brady, 1987; Sweet and Good, 1985). Hence
they are ignored in the block diagram, The
system parameters are:

K,=4.8 volis/rad : potentiometer constant

R=8.19 Ohms : motor winding resistance

K.=0, 0388 volts-sec/rad . motor back emf constant

K.=0.0388 N - m/A :motor torque constant

K.=6: power amplifier constant

n=436,7 : gear ratio

K.=200 N -m/rad : spring constant

F.=0, 004264 N - m : motor Coulomb friction

J==0, 000003 kg - m®: motor inertia

F=0,207 N-m:load side Coulomb friction

J=0.3 kg-m®:maximum load inertia

Define the state variable vector x by

X= (X, Xy, X5, Xo) T

¥,=v :load angular position measured by a

potentiometer

x,=w : load angular velocity

x,=08./n : motor position divided by the gear
_ ratio

x,=w,/n : motor, velocity divided by the gear

ratio

Then the system equation in vector form is

given by

+

[0 0 0
3.33F(xz) |+ 8 us 3.83T¢ (1)
| 736Fu(xs) 21.

Il. DIGITAL TRACKING CONTROLLER

To design a digital controller, one must first
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choose the sampling time, In this experiment,

the sampling frequency of 20 Hz, or the
is chosen,
Let r be the ramp reference input, The

objective is to design a digital control as a

sampling time of T=0,05 sec,

feedback controller of the measurable variables
only such that x,=r in steady state for all step
or ram;; reference input function r under either
a constant or ramp disturbance Ts, It is further
required that the settling time is less than 5
And the overshoot is less than 20%,

It has been shown (Kim, 1988) that if the
system is augmented by two additional digital
then the
output of the augmented system can be forced

r{t).

sec,

error integrators at the output side,

to follow the given reference input

Therefore, the system(l) is now augmented by -

introducing additional state variables %, and x.
which are defined by

x5 ((k+1)T)=x5 (KT)+Txe (kT)

x6 ((k+1)T)=xe (KT)+T{x1 (kT)-r(kT)} (2)

where T, the sampling time, is 0,05 sec, Then
the augmented system is given by

. 0 48 O 0
x= | -139 0 667 O X
0 0 1
| 72.8 0 -350 -61.3
0 0 0
+} 3.33F(xz2) |+{ 0 ju+| 3.33Tq
0 0 0
| 736Fm(x4) 21.7 0

x5 ((k+1)T)=x5(kT)+Txe(KT)

x6 ((k+1)T)=x6 (KT}+T{x1 (KT)-r(kT)}
xs5(t)=xs5(kT), KT s t < (k+1)T
xs(t)=xs(KT), kT s t < (k+1)T

(3)

It should be noted that the augmented system
(3) is a hybrid system consisted of continuous
and discrete systems, Also, since the variables
Xs and x, are externally introduced to the
system,
available for feedback in the controller design,

they are measurable and hence are

To find a tracking digital control, consider
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the original nonlinear system with F=0, Fm=0,_
and Td=0.

0 4.8 0 0 0
-139 0 667 O 0

x={ 0 0 0 1 x+| 0 [u (4)
72.8 0 -350 -61.3 21.7

The corresponding discrete linear system for the

sampling time T=0 05 sec, is given by

0.307 0.180 3.324 0.314
-4.743 0. 307 22.766 0.292
0.032 0,003 0.847 0.139]x(kT)
0.535 0.153 -2.569 -0. 411

0.010
0.142

+ 10.012]u{kT)
0.301

x((k+1)T)=

(5)

Augmenting the above system with the variables
xs and X, which were difined in eq (2) and
letting x = (x,, X», X, X, X5, X,) T, the following

augmented linear system is obtained,

x((k+1)T)=

0.307 0,180 3.324 0.314 0 O
-4.743 0.307 22.766 0.292 0 O
0.032.0.003 0.847 0.139 0 (0) .
0
1

0.535 0,153 -2.569-0.411 0 x(kT)
0 0 0 0 10.05
0.05 © 0 0 0
0.010 0
0.142 0
0.012 0
+ 0'801 u(kT)- 8 r{kT) (6)
0 0.05

Suppose a digital feedback controller u(kT)
stabilizes the augmented linear system(6) when
r=0,
to the original augmented nonlinear system(3)

If the same digital controller is applied

with bounded nonlinearity, then it is shown (Kim,
1988) that either the augmented nonlinear system
(3) with T,=0 and r=0
globally stable or the system response goes into
a limit cycle,
result of applying the feedback controller, then

is asymptotically

If a limit cycle is present as a

the feedback parameters are readjusted by



applying the describing function method to eli-
minate the limit cycle, The resulting system then
becomes asymptotically globally stable, 1t is
1988) that if a digital
feedback control u(kT) makes the augmented

further shown (Kim,

nonlinear system(3) with bounded nonlinearity for
r=0 and T.=0 asymptotically globally stable,
then the system response x, follows any given
step or ramp reference input r with zero steady
state error under any step or ramp disturbance
T,
with respect to the system parameter variations

In addition, the closed loop system is robust

in the sense that as long as the closed loop
system (3) with r=0 and T;=0 remains globally
asymptotically stable, the output of the system
follows the given reference input r with zero
steady state error, that is, the control u(kT)
is a robust tracking digital controller,

To derive a tracking digital controller, a dig-
ital controller, which stabilizes the augmented
linear system(6) when r=(, is obtained first,
In general, the controller must be given as a
In the

present case, however, only the output x, and

feedback of the entire state variables,

the augmented variables x; and x, are available
for feedback. It is shown(Kim and Chyung,
1984; Na, 1986) that, in this case, there exists
a delayed feedback control of the form

u{kT)=-{ Kyxi (kT)+K2xy (k-h)T)+K3x;
{(k-2h)T) +Kax1((k-3h)T)

+Ksxs (KT)+Kexs (KT) } (7)

which stabilizes the linear system(6) when r=9.
Here the positive integer h is the basic time
delay, Fig. 3 shows the closed loop system when
the above controller is applied to the original
augmented nonlinear system(3). To find a con-
which satisfies the given transient
define the cost function J by

troller
requirements,

3 =k§0{;<kT5To;(kT)+u<kr)z} (8)

EES

Td

K«+K2 "+ Kz " +Ke™ }—
J| X l‘r
Fig. 3 Delayed Feedback Control System

where Q=QT< ( is a positive semidefinite matrix
Then, the
feedback gains Ki's in eq (7) are chosen so

and the element qs is nonzero,
that the above cost J is minimized subject to
the constraint given by eq, (6) with r=0 and
the initial condition,

x(kT)=(x1, X2, X3, X4, X5, %6 )T

39
=(1,0,0,0,0,0,)T )

where k=-3h, -3h+1,. ..., 0. The matrix Q
should be chosen so that the given transient
constrains are satisfied,

For
delay h=2 is chosen, After investigating several

the current implementation, the basic

weighting matrices, the following Q matrix is

chosen for the cost function ],

100 0 0 0 0 0
=lo 0 0 0 8 9
o 0 0 0 0 0 (10)
0 0 0 01000 0
0 0 0 0 01000

The corresponding optimal delayed feedback
digital controller is obtained numerically and is
found to be

u(kT)=-{ 2.83x;(KT) + 1.21x1((k-2)T)
- 0., 045x1 ((k-4)T) + 0.27x1 ((k-6)T)
+ 8.84xs(KT) + 8.67xs(kT)'}  (11)

When the above controller is implemented on
the actual nonlinear manipulator, the system
responses are as shown in Fig. 4. Fig 4(a) is

the response to a step input with a magnitude
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of 0,2 vwolt,
a ramp input with a slope of 0.05 volt/sec,

and Fig 4(b) is the response to

Although the ramp response follows the input
with zero steady state error, the step response
clearly shows the existence of a limit cycle,
Therefore, it is now necessary to readjust the
feedbac_k parameters using the describing func-

tion method,

Time (sec)

T+

(a) Step response (10 mV/div or 0.12°/div, 1sec/div)

(b) Ramp response(50 mV/div or 0.6°/div, 1sec/div)

Fig. 4 System Responses(K,=2.83, K;=8.84, K, =
8.67)

V. LIMIT CYCLE ELIMINATION

The controller obtained in the previous section
causes a limit cycle, To apply the describing
function method to eliminate the limit cycle, it
is necessary to rearrange the block diagram.
When the load side Coulomb friction F
reflected to the motor side through the gear
its value is found to be 0, 000474 Nm,
Since the motor
0.004264 Nm, the load side Coulomb friction,
when reflected to the motor side, is only about
one tenth of the motor side friction, Thus, the

is

train,

side Coulomb friction is

load side friction is ignored in the describing

A9Y A2z (1992, 6Y)
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function analysis, By combining a single block
D(z), which is the fundamental transfer function
of the discrete part, and replacing the holding
the
block diagram given in Fig. 3 can be rearranged
as shown in Fig 5 It is suggested (Kim, 1988)
that for the describing function analysis in

circuit by the transfer function (1-e’57)/s,

nonlinear sampled-data system, the sampling

operation can be replaced by the transfer
function of 1/T since describing function is
concerned only with the fundamental frequency

component, In Fig 5, the motor side Coulomb

Fig. 5 Delayed Feedback System with the Nonlinearity
in the Forward Path

friction is also replaced by an equivalent
nonlinea element N in the forward -path(Won,
1985),

step reference inputs, we can let T,=0 and r=

For the describing function analysis for

0 without loss of generality. From Fig 5 overall’

fundamental transfer function L(s) of the linear

part is given by

K¢
RJmns

KsKP RJSz
Js3+Kss KeKpn
1-e-sT

KsKp
* 3 Ka Js3+Kss

L(s) =

[Kbn+

D(esT)] (12)

%Ta Te

L(S)

Fig. 6 Closed-loop System for Describing Function
Analysis



Fig, 6 shows the simplified block combining the
linear part into a single block for the describing
function analysis,

Suppose the closed loop system is in a limit
cycle, Let z,=Msin(wt), 7,=M,sin{wt+¢}and x,
=M,sin (@t + ¢)
components of 7., 7. and x,, respectively, Let
No& (M) be the describing function of the
nonlinearity N. The describing function N (M)
is defined by ‘

be the fundamental frequency

Naf (M)= (13)

exp(j®)

Let A=0,004264/M, a=sin"'(A), Then, the
describing function N. (M) is given (Shinners,

1978) by

Naf(M)= y aZ+bZexp(j tan-1(b/a)}) " (14)
where, for A>0.536,

a= 1-A2 | b= 2Ay(2/x)2-X7 (15)

and for A)0,536,

a lT[;z-( a-8)-sin(a){cos(a)

+cos( B ))-cos( B )(sin(a)+sin( B))]

1

b= - (sin(a )+sin(B))?

cos( B)-Bsin(a)+cos(a)-(x-a)sin(a)=0
(16)

After a lengthy but routine manipulation and
substituting the actual parameter values as well
as h=2 and T=0,05 in L(s) of eq (12), and
also letting s=jw, the transfer function L (jw)
of the linear part of the system is given by

61.3
w2(666.7-w?)
{K1sin(0.05w ) -K2{ sin(2.05w)
-sin(2w) }-K3{ sin(4.05w)

- sin(4w) } -Ke{ sin(6.05w)
-sin(6w) }

22660

Ljw)= {5.7w?2+

Pl

4

-0.00125Ks{ sin(0.05w )
-sin(0.lw) VV/w
+ 0,05Kesin(0.05w) }]
61.3
._ 613 o5
+j w2(666.7-w25w 666. 7w
22660

+

{Ki {1-cos(0.05w )}

-Kz{cos(2.05w )-cos{2w)}
-K3{cos(4.05w }-cos(4w )}

-K¢{cos(6.05w )-cos(6w )}-0.00125Ks
{cos(0.05w)-cos(0. 1w )}/

+0, 05Kgcos(0.05w ) }] (17)

The magnitude and frequency of a potential
limit cycle can now be investigated by studying
the intersection point of the loci of -1/Nu (M)
and L {(jw) For the
feedback controller given by eq, (7), the general
shape of the loci are as shown in Fig 7 and
detailed loci are given in Fig, 8.

on the complex plane,

-1 Im
Nar(M)

Im
> uz
\( \

Y
Wy, We Re
2% .

Fig. 7 Overall Loci of -1/N, (M)
to Scale)

and L(jw) (Not

For a controller given by eq. (11), the locus’

of L(jw) is labeled as L'(jw) in Fig. 8, There
is indeed an intersection, The magnitude and
frequency of the limit cycle are M=0, 95 and
w=1,8 The corresponding magnitude at the
is M,=0.04
frequency of the actual response are, from
Fig. 4(a), M,=0,045 and w=1 09, which are in
reasonable agreement with the predicted

output x, The magnitude and

a
values,

98
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To eliminate the limit cycle, .it is necessary
to avoid the intersection, However, from Fig. 7,
it is obvious that the intersection cannot be
removed by readjusting the feedback
parameters, for eliminating the intersection will,
in general, cause the system to be unstable,
that is, the L(jw) plot will encircle the (-1,0)
point,- Therefore, the parameters are now
readjusted so that the magnitude of the limit
cycle is acceptably small, It can be seen from

Fig, 8 that the magnitude is reduced if the locus

Im
500. 0
L L’(Jv :
Nas ) z
K\U(Jv)
Litjo)
Re
-80.0 -40, 0 0.0

Fig. 8 Loci of -1/N, (M) and L (jw)

of L{jw) is moved up, for the magnitude
becomes smaller as the intersection point moves
up through the locus of the describing function,
Computer aided plotting of L (jw) shows that
the locus of L(jw) is moved up if the feedback
parameters K, and K, are increased and the
parameter K is decreased, Of course, one must
be careful not to modify the locus of L (jw)
so much that the resulting locus encircles the
critical point(-1,0), for this will result in the
system being unstable,

To reduce the limit cycle, the feedback
parameters K, and K, are first increased from
their original values of K,=2 83 and K.=8.67
to the values of K,=4 and K.=12. Then, to
further reduce the magnitude, K, and K. are
increased to K,=4.5 and K.=15 and K; is

Table 1 Magnitude and Frequency of Limit Cycle
for L', L* and L3

Describing Function Actual Systes

Ky Ks Ko w M My ') My
rad/sec| N-M volts |rad/sec| volts

L1 [ 2.83 | 8,84 | 8.67 1.80 0.95 0.04 1.09 | 0.045

L2 ) 4,00 ) 8.84 {120 1.83 0.93 | D.023 0.09 | 0.024

LY [ 4.50 | 6.00 ] 150 1.35 0.92 [ 0.014 - 0.0

.Tlme (sec)

b l—+——o—o——0—o-—c-o~—|—¢-—o—-—d—o—— —— b —

Fig. 9 Step Response(10 mV/div or 0.12°/div, 1 sec/
i {[H“, I‘”H;.’, i H '“l “ m! } I lq- .
i

div) for L*(K,=4, K,=8.84, K.=12)
(l

it
| M .
il

I {’I
it
Hh
I'

——— Tlmg(S_ec)

(a) Step response (10 mV/div or 0.12/div, 1 sec/div)

T T e e LA e

i Illllll il IH l [ ' ‘ il “1
mmmnmmmnnnmn IIIIIIIIHIIIIIIIIIIII I nmmu il IIIIIIIIIIIIHIH’H T

i =

L

(b) Ramp response (50 mZV/div or 0.6°/div,1 sec/
div)
Fig. 10 System Responses for L'(K,=4.5, K;=6,

...——-—-...:*EE:

decreased to K;=6. The resulting loci are given
in Fig.8 as L*(jw) and L*(jw), respectively, The
corresponding limit cycle data as well as the
data for the original L'(jw) are given in Table
1. The actual system responses are given in
Fig.9 and Fig, 10, respectively, As can be seen



from the figures, the Ilimit cycle is indeed
reduced in the case of L% and it is completely
eliminated in the case of L' Thus, for the

feedback controller

u(kT)=-{ 4,5x1 (kT) + 1,21x;((k-2)T)
- 0.045x) ((k-4)T) + 0.27x; {(k-6)T)
+ 6x5(kT) + 15xg(kT) } (18)

the system response follows the given step or
ramp reference input with zero steady state
error, The experimental results also showed that
the controller is able to cancel the effects of
all step or ramp disturbances,

V. CONCLUSIONS
A satisfactory robust digital controller has
been designed and implemented for a robotic
manipulator, The objective is to maintain zero
steady state error for a step or ramp reference
input under constant or ramp disturbance, The
method is based on augmenting the system with
two additional digital integrators and feeding
back delayed values of the observable state
variables. The feedback parameters are obtained
by applying the optimal control theory and then
readjusting the parameters using the describing
function analysis in nonlinear sampled-data
system, Although the method is developed for
it
applcable to other similar manipulators,

a particular geared manipulator, is also
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