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Waveguide : TE-Mode Analysis )
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ABSTRACT

The TE-mode characteristics of scattering and reception by a flanged parallel-plate waveguide
are examined. The technique of the Fourier transform is used to represent the scattered fields in
the spectral domain, The simultaneous equations for the transmitted field coefficients are solved to
obtain the solution in an asymptotic series form. The numerical computations are performed to il-

lustrate the behaviors of the scattered field and the transmission coefficients versus the aperture

size,
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1. Introduction

Electromagnetic scattering from a conducting
double-wedge has been extensively studied with
the asymptotic high-frequency techniques [1,2]
since the exact solution in a closed form is still
unknown, TM-mode scattering from a flanged
parallel-plate waveguide (a special double-wedge
geometry) was considered in [3] using the Weber
Schafheitlin integral technique. In this paper, we
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examine the TE-mode scattering from the flan-
ged waveguide by utilizing the Fourier transform
and the mode-matching technique [4,5]. In the
next Section, we present the scattered field in
asymptotic series which simplify to a closed form
in the high frequency limit. Numerical computat-
ions are performed in Section 3 to illustrate the
behavior of the scattered field and the trans-
mission coefficient. A brief summary on the th-
eoretical development is given in Concluding
Remarks,
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Fig. 1. Scattering Geometry

[I. Scattered and Received Fields Derivation

Fig. 1 shows a perfect-conducting flanged par-
allel plate waveguide of width 2a. In Region (I)
(2>0), an incident field E: (TE mode :transverse-
electric-to-propagation-direction) impinges on the
flanged parallel-plate waveguide, Region (II) (z<
0, —a<x<a) denotes the waveguide interior. The
wave numbers of Regions (I) and (I1) are &, (=2=n
/A) and k, respectively and e time factor is
suppressed.

Then in Region (I), the total electric field
consists of the incident, reflected, and scattered

fields which are respectively written as

E,'; (x,2) == g/hxx—jkaz
E; (x,z) == — gikxtijkz

Ej(x,2)=1/(2n) [* E5(D efortsme dg

where k= k,sind
k.= kocos0

kFW

ES(Q) =f:( Ey(x,0) e dx

Since H.(x,2)=—1/{jwu)dE;(x,2) /dz, the cor-
responding x components of the incident, refle-
cted, and scattered H-fields may be readily obta-
ined.

In Region(II), the total transmitted field may
be represented as

El(x,2) = : dmSinam(x +a) e i (2.1)
m=1

where

am=mn / (2a)
Em= sz_ai

To determine unknown coefficient d,, it is
necessary to match the boundary conditions of
tangential E- and H-field continuities. First, the
tangential E-field continuity along the x-axis (-0
<x<00,z=0) yields

E3(x,0) = E;(x,0) [xi<a
=( x| >a

Taking the Fourier transform on the both sides of

above equation, we get

Ey ()= [ Ej(x0)er dx= [ E}(x,0) e dx
(2.2

Substituting (2.1) into (2.2), and performing in-
tegration with respect to x, we obtain

O =L a2t o [0 —1m— ] (23)

Second, the tangential H-field continuity along
—a<x<a,z=0, gives

Hi(x,0) + H} (x,0) + Hi (x,0) = H! (x,0)
. €0 k -~ .
2keti— [T S ES() e dy

= Z:l dmémsinam(x + a) (2.4)
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Substituting (2.3) into (2.4), we obtain

2k e;k,x_*z f (_llmem -sa

e i dl = \: dmimsinam{x + a)
m=1

In order to determine the coefficient d», we mul-
tiply the above equation by sinaw(x +a) and inte-
grate the both sides with respect to x from —a to
a, then we obtain

fkf‘]; [—(—1)eat g ika]
=L :: Amlrn+ dnina (2.5)
where
I = f l
aa.[(—1)"e"—e ™][(-1) "e “—e ]k, dr

(C=a) (¢ —a")

The analytic contour integral evaluation of Imm

may be performed in the complex { plane to give

1mn=2ﬂanndsmn‘(llrrm+[2nm) (2.6)

where nm= \/ki—a’, and m» is the Kronecker

delta. The explicit expressions for limn, l2mm are

given in [5] such as :

Ilmnzf:

—4jaf(—1)" et o= kv \Jy(— 27 + p)
[(A+70)2— 21 (1+jv)2—p2]

dv
(2.7)

oo 4jaf Vo(—27+v)
o [(1+j0)2— 21 (1+sv)2— 62]

Lomn =

dv
where a=am / ko, B=an/ko

Performing integrations with respect to v [5], we

obtain
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2aBeVha (1)
(a2 — 82) =
SILLA(8) —Alt2) ] /a—[A(tz) —Al84) ] /8] (2.8)

DNmn= —

o — 4]@19”7
(2= )
(V1= Gy NMIZEL i1 6]
a 8
where
St =()(0.55)

Al =(=1)'nt' " Nerfc(\/pil‘)*_zl'/\/;pusﬁ
2(21—27~3)!!(—2pt)'

p =2ka

erfc(---) : complementary error function
o =(a—1)j, te=(—a—1)j, s=(8—-1)],
th =(=8-1)j

Note that 5Im» of (2.8) is expressed in terms of

the asymptotic series of which /* term has an or-

der of O (1 /koa)!~05), The series expression for limn
converges only for |2koa/(mn)|>1;hence, it is
computationally more efficient to use a fast-con-
vergent integral (2.7) than (2.8) for the evalu-
ation of Imm. When koa— 0, the branch-cut con-
tribution becomes negligible, thus fym— 2nanmdmn.

Substituting Im» of (2.6) into (2-5) and solving
for dm, we obtain :

D=(U-R)!S=S+RS+ RS+ (2.9)

where D is the column matrix of elements dm, U
the identity matrix, R the full matrix of elements
ram and S the column matrix of elements of s,

The explicit expressions of 7»m and s, are given as :

M+ Tpm)
2n(én+na)a

Ynm=—

2k — (—1)7 e/ + g haa]
(én+ ﬂn)a(ai_kg)

n —
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If =k, then

(Ilmn + 12mn)
4dné.a

Yam=—

kal—-(-1)"e™+e "]
Ealai—kY)

Sn ==

The examination of 7nm reveals that #um~0[1/

Vhkoa ] for kya>1 and &,+n,#0. For ka>>1, the
branch-cut contribution may be ignored (7xm=~0),
thus (2.9) reduces to the Kirchhoff apprximation

such as
dm X Sm (2.10)

The branch-cut contribution Iimx and foms in I
account for coupling between E; (x,z) of the con-
tinuous spectrum and El(x.z) of the discrete
spectrum, When ka>>1, the aperture magnetic
current, Ej (x,0), is approximately given as E} (x,0)
which has a very narrow spectral width ; hence,

the branch-cut contributions can be ignored.

Another special case of interest is low-fre-
quency scattering (kae<<1). When ka<<1, the
most dominant element among #am is 711 whose
value is appoximately given by 2 /n2 Hence, we

have

dixs1/(1—rn) (2.11)

. Numerical Computations
The time-averaged power density P, which is
received by the flanged parallel-plate waveguide,

is

p=-1 [° Re(E'x H") - (—7) dx

=52 % Re(&) |dnl?

where E! and H' are, respectively, the transmit-

ted electric and magnetic field vectors and the
symbols Re(::-) and (---)* respectively, denote
the real part of (---) and the complex conjugation
of (-+).

The far-zone scattered field at distance » from
the origin can be evaluated by utilizing the

stationary phase approximation such as

. Y
ES (8, 0):e1(k(,r*n/4)\/k[ cos0sy. d.a,
m-1

2ny
Ik asind Jk.asint
e T (=1)"—-e"
(k.sind ) —a’, (3.12)

where 6,=sin '(x /7) and » = Vx'+ z *

We first evaluate the scattered field for
low-frequency scattering (ka<<1). Substituting
(2.1D) into (3.12), and taking the first leading
term (m= 1), we obtain

gilkgr=3n/4)

E5 (65, 8) = 0.5(koa)? cosfcosts (3.13)

kor

Note that (3.13) agrees with other low-frequnecy
solution of scattering from a narrow groove [6].

In Table 1, the transmission coeffcients d,, are
tabulated versus 2a /A for § =(’. Note that d,=d,
== = () because § =0’

In Fig. 2, |d.| are plotted versus 6 for ka=10
(k=k,). In order to obtain the exact and approxi-
mate solutions, (2.9) and (2.10) are respectively
used. Fig. 2 shows that the approximate solution
(2.10) agrees well with the exact one (2.9) in
high frequency scattering.

Fig. 3 show the scattering width ¢ (6°= —g)
versus 6 for ka=10 where o=Ilim,..277|E$(8s,
0) /E{(8) 1. The number of coefficients d, used
in the computation is 10. The comparison of the
exact solutions between two cases (k=#k, and+/3
k) shows that an increase in k results in a de-
crease in ¢. In Fig. 3, the exact soltion is
compared with the UTD solution which may be
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Fig. 3. Scattering Width ¢ (6;= —6)
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Table 1. Transmission Coefficient dm versus 2a /A for 0
=0° (ko= k)

Amplitude of dm Phase, degrees
2a/x| d d; ds di ds ds
0.51 | 3.0714 | 0.1710| 0.0738 | -19.61 | -41.26 | -37.79
0.61 | 2.0517 | 0.1506 | 0.0592 | -7.27 | -63.11 | -55.66
0.71 | 1.7721 | 0.1771 | 0.0644 | -3.26 | -76.02 | -68.30
0.81 {1.6238 | 0.2210 | 0.0758 | -1.27 | -83.70 | -76.61
0.91 | 1.5304 | 0.2833 | 0.0910 | -0.20 | -87.72 8121?
»*I‘Oui 1.4461 | 0.3635 1 0.1092 |  0.36 | -89.03 | -83.66
1.11 | 1.4194 | 0.4684 | 0.1299 | 0.61 | -88.06 | -83.80
Wl.?l - 1.3341 1 0.6088 10,1524 | 0.65 | 84.83 | -82.08
1.31 r 1.3565 | 0.8061 | 0.1754 | 0.53 | -78.73 | -78.34
141 1.3344 1 1.1150 [ 0.1947 | 0.22 | -67.75 ! -71.60
1.1 1.3262 1 1.5705 | 0.1600 | -0.83 | -27.14 | -59.36
1.61 1.3327 | 1.0477 : 0.1595 ‘ -0.55 J -12.05 | -75.68

obtained by superimposing the singy-diffracted
solution [2]. The comparison between the UTD
solution and ours indicates a good agreement
(less than 2dB error) when g< 20,

IV. Conciuding Remarks

Using the Fourier transform and mode-match-
ing approach, we obtain the series solution to
scattering from the flanged waveguide. The nu-
merical computations are performed to illustrate
the behaviors of the fields scattered and received
by the flanged-parallel plate waveguide. The
series solution, which is based on (2.9), is exact

and very efficient in the numerical computation.
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