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1. Introduction

Wear process is a removal process of contact area
from the operating surface of a body occurring as
a result of relative motion at the surface. This re-
moval process is related to deformation and frac-
ture of the contact area. Since the publication of
Hornbogen’s paper [1] showing the importance of
a material’s fracture toughness t. wear rate, the
fracture mechanics approach to the wear mecha-
nism has been attempted. Suh and his co-workers
[2-5] attempted to analyze the void nucleation and
the driving force for a subsurface crack growth on
the basis of fracture mechanics. Rosenfield (6], Hi-
s and Ashelby [7,8] computed stress intensity
factors for subsurface horizontal cracks. Rosenfield
emphasized the effects of friction resisting the
mode II sliding of crack faces. Keer and his co-wor-
kers [9,10] evaluated the K, and K; values for
both subsurface horizontal cracks and surface brea-
king vertical cracks without consideration of friction
on the crack faces in an elastic half-space loaded
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by Hertzian contact stresses. More recently, Mura-
kami and his co-workers [11, 12] showed a theore-
tical demonstration to the mechanism of crack gro-
wth from the viewpoint of the fatigue crack propa-
gation in lubricated rolling contact.

However, exact wear mechanisms for the mate-
rials have not been clarified. In particular, Hsu and
his co-workers [13, 14] reported the wear rates of
several ceramics increased suddenly by several or-
ders of magnitude as a result of a slight increase
of the test variables. Wear transitions of several
ceramics occur as a result of increasing normal co-
ntact load, sliding distance or sliding speed. Cera-
mic materials have been attracted as promising st-
ructural materials. From this point of view, it is
very important to elucidate the wear mechanisms
involved in the transition phenomena of ceramic
materials.

The main objective of this paper is to clarify pro-
pagation behavior of inclined surface crack under
the moving Hertzian contact as the first step to
elucidate the wear transition mechanism of ceramic
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materials.

In sliding contact, the surface is subjected to a
set of normal and tangential stresses which produce
deformation and fracture of the materials in a sur-
face layer [15]. The process of fracture consists
of plastic flow, formation of microcracks and propa-
gation of these cracks to eventual failure.

2. Method of Analysis

2-1. Statement of the Problem

Consider an elastic half space containing a sur-
face crack inclined at an angle ¢, to the half space
surface, as shown schematically in Fig. 1. The sur-
face of the elastic half space is loaded by normal
and tangential tractions, defined by eq. (1), which
are induced by Hertzian contact sliding that moves
along the surface from left to right.

PX»)=—Py /1~ (X/0), Py>0

QXp)=pPX>) 1)

where P, is maximum normal Hertzian stress, C
half-lengh of Hertzian contact, and p coefficient of
friction at the region of Hertzian contact. In the
plane strain condition, the stress component (.,
Ty, Ty) and displacement gradients (0U./0x and
0U,/0x) can be expressed, in the absence of body
force, in terms of the complex potential functions
®(Z) and ¥(Z) [16]:

Tt T,y = 2L D(Z) + D(Z]
Ty, — ity =Z)+ DZ) +ZD'(Z)+¥(Z)
JoUu, . du,

-
ox lax

ZG[ } =x®(2)~O2) —ZP(Z)—Y¥(2)

@)

where G is the shear modulus, Z=x+iy and k=3-
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Fig. 1. Analytic model and coordinate systems
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4v for plane strain where v is Poisson’s ratio. The
bars imply complex conjugation. Outside of the con-
tact region the surface of the half space is assumed
to be free of tractions. Then the boundary condi-
tions specifying normal tractions on the surface of
the half space are given as follows:

DAZy) + Do)t ZoD; (Z2) + ¥o(Z2) = PX2) —iQ(X2)
(Y,=0, |X|<C) 3

Do(Zy) + DoZo)t 2D, () +¥a(Z22)=0
Y,=0, |X;/=20) 4

On the other hand, the requirement that opening
region of crack surface be free from tractions and
incorporate Coulomb’s law of friction in contact re-
gion of the crack surface leads to following boun-
dary conditions:

D)+ D7) +ZID(Z)+¥(Z) =0
(Y=0, 0<X<dy) )]

Im[®Z)+ D7) + 2D Z) +¥Y(Z)=
+ uRe[®(Z)+PZ) + 72D (Z) + ¥Y(Z)
(Y=0, d,<X<d) (6)

where p° is the coefficient of friction between the
contacting crack surfaces, Im and Re mean imagi-
nary part and real part of complex potential func-
tions respectively, the positive sign of u correspo-
nds to the case that the upper crack surface slips
into the negative x-direction with respect to the
lower crack surface, while the negative sign of u¢
indicates slipping into the opposite direction. The
applied shear stress on the crack surfaces must
be greater in magnitude than that of the frictional
stress due to the applied normal stress on the crack
surfaces. The asymtotic behavior of the complex

potential functions at infinity in the half space are:
D=0, ¥(2)=0 (Z|>w) @)

2-2. Singular Integral Equations

The complex potential functions, ®4(Z,) and ¥y
(Z») [17], which satisfy the boundary conditions (3)
and (4) are given by

®u(7)=" “(;‘;" TS VBT ®

Yu(Z)= — OulZs) — Di(Z,) — 2D (Z,) €)]
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where Z,=X;+1Y,

The complex potential functions ®x(Z) and ¥:(Z)
referred to the Z-plane are obtained from the ®y
(Z,) and ¥i(Z,) with respect to the Zs;-plane.

In order to apply the method of continuous dist-
ributions of dislocations to this crack problem, we
derive the complex potential functions ®p(Z;) and
¥y(Z,) for an isolated edge dislocation, whose slip
plane is inclined ¢ from the surface, at a point Z;
=aq in Z-plane of the semi-infinite medium. Then
the complex potential functions are given by

[18]
iGB et iGB

PolZ)= D T—a  met D
ol (a—a)e
[ Tt ] (10)
__iGB re®  age®
¥olZ)= nx+ 1)L Z,— (Z;—a)? ]
iGB [ e ' B a e?
nx+1)L 2~ (Z,—a)
_ (a—we o _ 2a(a—a)e )
Z—ay o) (an

Where B is the Burgers vector of the edge disloca-
tion. It is easily found that the above complex pote-
ntial functions ®,(Z,) and ¥p(Z,) satisfy eq. (7). In
order to find the complex potential functions satisf-
ying the boundary conditions (5) and (6), the edge
dislocations mentioned above will be distributed
continuously along the line of the crack. When the
edge dislocations whose slip plane is perpendicular
to x-axis are distributed at y=0 and 0<x<d, in
the semi-infinite medium, we can obtain the follo-
wing complex potential functions.

G Jdu[ 1 e™ Qe ™

D= el 125 r T Re

] Bi(s) ds
12)

0

_ G @r 1 s
¥iz)= n(k+ 1)«[0 [Z's+(Z—s)2] Bi(s) ds

+ G f >[*e""" s(2e®0-1) ZSQ(S)]
nk+ 10 LPyZ) A7) P2
Bi(s) ds 13

where P(Z)=ze®—ge ™
Q(s)=s(e "0 —e)

and Bi(s) is dislocation density at a point
z=s (0<s<dy)
In the same method, when the edge dislocations
whose slip plane is parallel to the x-axis, are distri-
buted at y=0 and O<x<d in the semi-infinite me-
dium, the complex potential functions are given as
follows:

iG @dr 1 e Q(s)e 0
D= D o[ —s P2 P2 ]
Bu(s) ds (14)
iG d 1
¥s(2)= N(KH)M— Tt )ZJBZ(S) ds
iG d[ e s 25Q(s) ]
nx+1)JolPyZ)  PiZ) PXZ)
Bu(s) ds (15)

where By(s) is dislocation density at a point z=s
(0<s<d). By superposing the solution of above
equations, we can obtain the complex potential fun-
ctions ®(Z) and ¥(Z) which satisfy the boundary
conditions (3), (4), and (7).

D(Z)=Py(Z)+ OZ) + Ds(Z)
Y(Z) =Y (D) + YD)+ ¥s(Z) (16)

By substituting eq. (16) into egs. (5) and (6) of the
boundary conditions on the crack surface, a system
of two coupled singular integral equations for the
dislocation density functions B,(s) and By(s) are de-
rived as follows:

fah B, (S) L fdk,(x, s) Bi(s) ds
2 0

+ 2—f KX, B9 ds+%Re[F(X)]=O an

‘f)‘?j@d + f [ (X, $)F HEOW
[X—i; +-2~k1(x, 9]] B as

1
ty f 0 [hz(X, 9FHX) k(X s)] By(s) ds

+ %[Im[F(X)]xH(X)u"Re[F(X)]]:'O (18)
where HX)= 0 0<X<d,
1 dy<X<d
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FX)=®4X)+ PpX) +XD'o(X)  +¥u(X)
. e 2e7 e Q(s)
k1(X, S) + lhl(x, S) = Pl(X) m P?(X)
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2-3. Numerical Method of Solution

In order to solve the above simultaneous singular
integral eqs. (17) and (18) using the technique de-
veloped by Erdogan and Gupta [19, 201, we intro-
duce the following non-dimensional notation:

U D
it X e ae= Dne
d nD
ﬁz‘iy n2= §, B.= o o(&2)= EBz(S) (20)

F(X)=Puf(m:iB), F(X)=Pof(nzB2)
Hn(nz) - O OSnZSdU/d
1 do/d<mp<1

After applying non-dimensional notation terms defi-
ned by eq. (20) to egs (17) and (18), in order to
solve numerically the simultaneous singular integ-
ral equations by using the method of Erdogan and
Gupta [20] we introduce unknown gi(&;) and g(&:)
defined by eq. (21).
o1& = %’ gE)=g(—&) (&I<D

(D]

2

Using the Gauss-Chebyshev integration formula
corresponding to the weight function (1—&) "* in
the manner developed by Erdogan and Gupta [20]

OA&y) = (&) =g — &) { §2| <1 21

i

we obtain two systems of linear algebraic equations
to determine the unknowns g(€y) and gi(€x) as
follows.

n

DI

1 2n+1 &

g€
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@21/: 12n+1k10(nmn Euts By By ¢0)| i g1(§1k)
-5 Ko Eon B B 00,y 2620
2k:12n+1 20\ mrs Cnks Prms Prs Qo m- 1 £2(Car

=n e[ (Thr Bl)]

n

2.

1
k=1 n+1 Ep— M2

n

§ ¢
- Z 2n+ 1[Eh10(nM7r énkv Bm, Bm %)I'Zi% IHO(T]%)H

k1

——2(E)

1 1
[m + z—klo(nmn &nkv Bmv Bm ¢0)|,:;? ]]gl(‘élk)ﬁl

B2
) kX 5 +1h20(1’lmn Evor Brr Bur OO, n=g

2

+H()(T]2,)}1 kZO(nmﬁ &nkr ﬁmy an ¢0)|m 2 :HgZ(‘éZk)

=l Im{fns, B)1THnat Relfns, Bl] (22

where
nr
ni,—cos< 2n+1), r=1, 2, ---, n
2k—1
ﬁ,vk=c05<4n—+5n), r=1, 2, -, n

(=1, 2) (23)

In the case of 0<dy<d noting that normal stress
at x=d, has no singularity, we have

g(1)=0 (29)

The stress intensity factors related to the values
gi(1) and g(1) at the crack-tip can be expressed
as follows:

K]ZPU \/ﬁ gl(l)
Ky=Py \/-7'a (1) (25)

2-4. Criteria of Crack Propagation

For pure mode I the crack will propagate in its
plane at zero angle from its original direction. For
mode II the crack will tend to propagate at approxi-
mately 70 degree from its original direction. On
the other hand, based on the hypothesis that crack
will grow in a direction perpendicular to the maxi-
mum tensile stress, Erdogan and Sih [21] proposed
the maximum tensile stress criterion for brittle fra-
ture in the mixed mode loading. The angle of crack
extension, 0y, is given by one of two roots of the
following equation (see Fig. 1).
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Fig. 2. K/Pyp/nd versus a/c for pu'=0.1, ¢,=—90°,
d/c=0.2, u=0.0, 0.1, 0.3, 0.5, 0.7, 0.9
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We should choose the angle 6, which gives the ma-
ximum tangential stress in the polar coordinates
(r, 8 defined in Fig. 1.

Because of the obvious nature of the mixed mode
loading for the problem, it becomes necessary to
consider the effective stress intensity factor that
will control the crack propagation. The effective st-
ress intensity factor for the mixed mode which pre-
scribes the distribution of maximum tangential st-
ress at the plane 6=0, is given by

K.;=cos ei[l{,cos2 % _ 3k, sineo} @7

2 2 2
This theory postulates that if the effective stress
intensity factor at the crack-tip equals the critical
stress intensity factor Ky, the crack will extend
at the crack-tip in the plane normal to the maxi-
mum tangential stress.

3. Numerical Results and Discussions

As shown in Fig. 1, we consider the situation that
Hertzian contact loading moves along the surface

0.8

0.0
4=0.5
-0.4 |
14=0.7
L
4=0.9
-~0.8 1 1 1 1 Il

i .
-4 -3 -2 -1 0 1 2 3 4
a/c
Fig. 3. Ky/Pyn/nd versus a/c for p'=0.1, ¢,=—90°,
d/c=0.2, y=0.0, 0.1, 0.3, 0.5, 0.7, 0.9

1.0 | d/c=0.2

K/Pa/nd

0.2

1 L L

t 2 3 4

— 1 1 1 1
02 -3 -7 -7 o
a/c

Fig. 4. K4/Pw/nd versus a/c for u=0.1, ¢,=—90°,

d/c¢=0.2, p=0.0, 0.1, 0.3, 0.5, 0.7, 0.9

of semi-infinite solid containing inclined surface
crack from left to right. We investigate the propaga-
tion behavior of inclined surface crack on the basis
of effective stress intensity factor, K, defined by
eq. (27). Numerical calculation were performed for
the stress intensity factor at the tip of an inclined

Vol. 8, No.2, 1992
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surface crack. The variations of dimensionless st-
ress intensity factor, Ki/Pn/nd, Ky/Pw/nd and
K,/Poy/nd for vertical surface crack (¢o=—90°)
and inclined surface (¢o= —45°) are shown in Fig.
2~Fig. 9. Figs. 2, 3 and 4 show the numerical resu-
Its of vertical surface crack for p=0.1, d/c=0.2,
and u=0.0, 0.1, 0.3, 0.5, 0.7 and 09. Fig. 2 shows
variation of K,/Po\/ nd and a/c. As Hertzian contact
load moves along the surface of semi-infinite soltd
from left (a/c=—4) to right (a/c=4) stress field
of subsurface varies. Since the stresses in the vici-
nity of the Hertzian contact are compressive stress
which acts to close the crack, so the crack at the
position where Hertzian compressive stress applies
may be closed. As can be seen from Fig. 2, K,/P,
\/Ea abruptly increases after a/c=04, reach a ma-
ximum value at a/c=1.0, and gradually decreases
with the movement of Hertzian contact load. Fig. 2
also shows that the magnitude and onset of K;/P,
v/nd is directly related to the coefficient of friction
of contact surface. Ki/Pp/nd increases with the
coefficient of friction on the Hertzian contact. Maxi-
mum of K/Pyn/nd occurs in the vicinity of trail
edge (a/c=1). However, its location is dependent
on coefficient of friction. In Fig. 3, Ky/Pp/nd has
alternating shear stress which occurs as the Hert-
zian contact load passes from left side of the crack

1.0
4°=0.1 =0.9
- $,=—90° #
d/e=0.2
‘; 0.8 ¢
E
e L
; 0.6
3 O
0.4 +
p=0.3
0.2 + u=0.
r L=0.0
0.0 ;

1 1
-4 -3 -2 -1 O 1
a/c
Fig. 5. K,/Py/nd versus a/¢ for u‘=0.1, ¢,= —45°,
d/c=0.2, 1=0.0, 0.1, 0.3, 0.5, 0.7, 0.9
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to right side of that. Magnitude of Ky/Poy/nd dec-
reases with coefficient of friction between crack su-
rfaces, |°. This result gives us that friction of sur-
face acts as resistance in mode II type crack propa-
gation.

As can be seen from Fig. 3, it is clear that K;/P,
\/rr—d is directly related to the coefficient, p. Fig. 4

Keff/Pav/nd

2 3 4

-1 0 1
a/c
Fig. 6. Ky/Py/nd versus a/c for p'=0.1, 0,=—45°,

d/c=0.2, p=0.0, 0.1, 0.3, 0.5, 0.7, 0.9
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2
o 04
N
Z
—0.4
- #=0.9 #=0.5
- 1 1 L 1 1 L |
V2 s =T 2 3 4
a/c

Fig. 7. K4/Poy/nd versus a/c for p=0.1, ¢p,=—45°,
d/c=0.2, p=0.0, 0.1, 0.3, 0.5, 0.7, 0.9
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Fig. 8. Kg/Ps/nd versus a/c for w=0.1, ¢,= —90°,
d/¢=0.02, p=0.0, 0.1, 0.3, 0.5, 0.7, 0.9

indicates variation of dimensionless effective stress
intensity factor, K,/Po/nd, when Hertzian contact
load moves from left side to right side in the same
condition of Figs. 2 and 3. In Fig. 4 it is found that
the probability of crack propagation is high at speci-
fic point depending on frictional condition. The pro-
bability of crack propagation is high at a/c=1.5 and
driving force is K; mode for u=0.9. On the other
hand, the magnitude of K,/Pyn/nd resulted from
Ky/Pw/nd is larger than that resulted from K,/P,
\/n—d in the range of u<0.5. In general we can de-
fine the friction condition by the magnitude of fric-
tion coefficient. Accordingly driving force in crack
propagation is K; mode for dry friction (1>0.7) and
Ky mode for fluid lubrication (u<0.1) and boundary
lubrication.

Figs. 5 and 6 show the variation of K;/Po\/nd and
Ku/Psy/md in the case of uw'=0.1, boundary lubrica-
tion of crack surfaces, for ¢po=—45° and d/c=0.2,
and p=00, 0.1, 0.3, 0.5, 0.7 and 0.9. Fig. 7 shows
also the variation of dimensionless effective stress
intensity factor, K,/Pyy/nd, for the same condition
of Figs.5 and 6. From Figs. 2 and 5, K,/P()\/Ei has
almost same tendency. However, Figs 3 and 6 show
that K;/Pp/nd has different tendency because of
much complicated stress field below the Hertzian

4 =0.1
b =g 5°
2.4 | d/c=0.02

Keff/Po/nd

Fig. 9. K,/Poy/nd versus a/c for =0.1, ¢,=—45°,
d/c=0.02, p=0.0, 0.1, 0.3, 0.5, 0.7, 0.9

contact. Fig, 6 indicates that magnitude of K;/P;
v/nd is related to the coefficient of friction on Hert-
zian contact. Fig. 7 shows that inclined crack has
higher probability of mode II crack propagation than
mode I crack propagation in comparison with same
crack length of vertical crack.

Figs. 8 and 9 are results of d/c=0.02, for w=0.1,
boundary lubrication, vertical and inclined crack,
respectively. Figures show the variation of dimen-
sionless effective stress intensity factor, K,;/Pp/nd.
As can be seen from these figures, coefficient of
friction is very important for crack propagation. The
increase in the level of surface damage seems to
correlate with the coefficient of friction. Severe
wear is, in most cases, caused by surface damage.
The rise of the coefficient of friction at the wear
transition point implies the larger surface rough-
ness developed by wear. It is confirmed that crack
propagation from pre-existing cracks controls the
wear transition. In this respect, reduction of the
coefficient of friction or the contact stress can pre-
vent the wear transition. The coefficient of friction
can be reduced by lubrication (both liquid and so-
lid) and/or by the formation of tribochemical films.
Investigators confirmed the formation of triboche-
mical films on ceramic surfaces in sliding contact

Vol. 8, No. 2, 1992
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[22-25].
4. Conclusions

Based on linear fracture mechanics, theoretical
analysis was conducted on the propagation charac-
teristics of an inclined surface crack under the
plane strain condition subjected to Hertzian contact
loading. In particular, this paper investigated the
effects of friction of Hertzian contact and between
surface crack faces, the effects of crack length and
crack inclination. Analytic results have shown that
driving force for crack propagation is K, mode for
fluid and boundary friction. The coefficient of fric-
tion at the Hertzian contact and crack surfaces
plays an important role in the wear transition. The
wear transition can be prevented by the reduction
of the contact stress or the coefficient of friction,
and by the formation of tribochemical films.
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Nomenclature
a . distance from origin to contact centerline
B . dislocation density
c . half length of Hertzian contact
d > crack length
do . length of opening crack part
G . shear modulus
K, Ky : stress intensity factors
Ko . effective stress intensity factor
P, : maximum Hertzian contact stress
do : crack inclination angle (degree)
®, ¥ ' complex potential function
v . Poisson ratio
p, o coefficient of friction for Hertzian contact
and crackfaces
0, . angle from crackline of maximal stress for

crack extention
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