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Flow of Dilute Polymer Solutions in the Confined Geometry
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Abstract—Polymer solutions flowing through small pores of which length scale is comparable with polymers
were experimentally demonstrated to have reduced apparent viscosities from those obtained in unbounded
media. Simple, but efficient rheometric configuration was designed to obtain both Newtonian and shear thinning
viscosities simultaneously over a wide range of shear rate for Xanthan and Polyacrylamide solutions flowing
through a well-defined cylindrical pore. Zero shear viscosities were found to decrease with decreasing size
of pores for both solutions, which can be correlated with relative size of polymers compared with that of
confining geometry. But power law index in the shear thinning region were not much changed for polyacryl-
amide solution and decreased for xanthan solution. It could be due to the flexibility difference between two
polymers. There seems to be a depletion layer of one molecular length near the wall, where the conformation
of the polymer chains is restricted as theories suggested.
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1. Introduction

Flow of polymer solutions in the porous media
has been an interesting subject not only because
of the practical purpose such as enhanced oil re-
covery but also because of academic reason. It
is obvious that flows in confined geometry is dif-
ferent from those in the infinite domain. Such
problem has been studied by several workers both
experimentally [1-6] and theoretically [7-11]. Al-
most every work on the experiments concerned
either a complicated geometry of small size or
cylindrical one of large size compared with length
scale of the polymer chain under consideration.
Here it may be helpful to classify two distinct
cases based on the relative size of polymer to
that of confining geometry. If they are comparable
with each other, it is easy to formulate theoretical
problem with help of molecular models such as
elastic dumbbell for flexible chains and rigid du-
mbbell model for rigid chains. However, its expe-
rimental verification is somewhat complicated due
to the difficulty of obtaining well defined flows
in such a small scale. In this context, Chauveteau
[12] performed excellent experiments on flows
of Xanthan solutions through a well-defined cylin-
drical micro pores to obtain that shear viscosity
decreases as size of pore decreases because of
the concentration depletion layer formed near the
wall of pore. On the other hand, if the relative
size of confining geometry is much larger than
that of polymers, then situation is totally different.
Viscosity reduction was observed on a rather too
large scale to be explained with depletion layer
of molecular scale. Cohen and Metzner [13] did
carry out such flowing experiments of several
polymer solutions through small capillary to see
apparent viscosities decrease as the diameter of
the capillary decreases. They interpreted it as an
apparent slip and developed a systematic analysis
to calculated not only thickness of slip layer but
also slip velocity. Here we are going to restrict
ourselves to the former case to demonstrate that
relative molecular scale to size of confining geo-
metry will play the major role to determine the
viscosity reduction and experimental results can

be compared with known theoretical predictions.
Furthermore it will be shown that flexible poly-
mer shows slightly different behaviors compared
with those of rigid one flowing in the confined
geometry. Simple, but efficient rheometric design
will be used to measure the both Newtonian and
shear thinning viscosities simultaneously, and a
proper method for data analysis will be performed
to see those differences.

2. Experiments

2.1. Materials

Polymers used for this work are Xanthan and
Polyacrylamide, which are representing rigid and
flexible polymer chains respectively. Xanthan was
purchased from Sigma Co. as practical grade and
its weight average molecular weight M, is about
6.2X 10, Polyacrylamide was obtained from Ald-
rich Co. as powder, of which M,, is 5.5X 10°. Water
is used as solvents for both polymers with appro-
priate quantity of NaCl. In case of Xanthan, 5 g/!
of NaCl was chosen for salinity, 20 g/l was for
polyacrylamide in order to maintain the expected
chain conformations for both polymers. Solvation
was done with a magnetic stirrer with minimum
speed in order to reduce any possibility of degra-
dation of polymer chains. After that they were
filtered through membrane with a low flow rate
to get rid of any solid particles, suspensions or
microgel. Concentration was chosen 400 ppm for
Xanthan and 500 ppm for polyacrylamide. For the
confined geometry, Polycarbonate nuclepore me-
mbrane was used, which is known to have a well-
defined cylindrical pore. Nominal diameters of the
pores were 0.6-10um and thickness 3-10 pm
shown in Table 1. Actual diameters measured by
SEM were slightly smaller than nominal ones and
a few pores were found to be only slightly con-
nected so that they can be considered to be sepa-
rated. Thickness of the membranes were measu-
red to be same as nominal thickness by the supp-
lier. In order to avoid any possibility of adsorption
of the polymer on the wall of the pores during
flowing in such a fine pore, chemical treatment
was done before experiment as suggested by Co-
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Table 1. Dimension of the pore membranes used
(unit in um)

Nominal Diameter Diameter Measured Thickness

10 9.7 10
8 78 7
5 5.6 10
3 2.7 9
2 19 10
1 0.96 10
0.8 0.72 9
0.6 0.62 10

hen and Meztner [13]. 2% dichlorodimethylsilane
was added to the solvent of 95% ethanol plus 5%
distilled water. This solution was flowed for a day
before experirhent.

2.2. Experimental Apparatus and procedure

In order to obtain the shear viscosities over
a wide range, a simple, but efficient rheometer
was specially designed (Fig. 1). Conventional capi-
llary rheometer will give us only one point on
the plot of shear rate-shear viscosity, but with this
rheometer a series of data can be obtained by
a single experimental run. Viscosity in the infinite
domain for reference were obtained by using a
capillary having either 0.5mm in diameter and
6.07m in length or 1mm in diameter and 0.1,
0.2, 0.3 m in length. Temperature of the solution
was maintainéd at 25C with on-off temperature
controller in the water bath. Rheometer is consist-
ed of two vertical cylinders connected by flowing
cell, which can be either a capillary for water,
or membrane with pore for polymer solutions. Si-
nce the pressure drop between two tubes is very
small so that the height and its time variation
was checked with a cathetometer, of which the
accuracy is up to 1073 mm. In case of membrance
cell, stainless grid was used to support it.

Basic argument of obtaining flow rates and pre-
ssure drops is very simple. Time variation of the
height difference will give us the flow rate and
height difference itself will be linear in pressure
drop. Then a proper mathematical scheme will
give us the functional relationship between shear
rate and shear viscosity, which will be explained

e A4 A1E, 1992
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Fig. 1. Experimental Apparatus 1) Flow device (pore
membrane, capillary) 2) Measuring Cylinder
3) Cathetometer 4) Temperature Bath.

later. For accurate experiment vertical tube set-
ting is necessary, which was done by levelmeter.

2.3. Data Analysis

Main reason for the design of a new rheometer
is to reduce the number of experiments. A proper
scheme for data analysis is necessary in order
to have shear rate-shear viscosity relationship
from height-time relationship measured experi-
mentally. First of all it was assumed to give us
a quasi-steady state, fully developed flow of Ha-
gen-Poiseuille type through the capillary. When
Newtonian fluid is flowed through a capillary, it
is very simple to obtain the viscosity. Flow rate
(Q) is proportional to the pressure drop (Ap) so
that

Q=nr*Ap/8uL, 6

where r, and L. are radius and length of the capil-
lary and p is the Newtonian viscosity. Q and Ap
are related to H and dH/dt as followings:

Q=—1/2 nR? dH/dt 2

Ap=pgH 3

where p is density and g is gravitational accelera-
tion constant. Thus, it can be converted to the
relationship between H and dH/dt.

dH/dt= —(r.*pg/4uL.RHH @

From the initial condition to say H=H, at t=0,
following equation is obtained easily.
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In[H/Ho]= — (r.*pg/4uL.R%t ®)

Thus a plot of In(H) vs t can supply us the visco-
sity at high shear rate as shown in Fig 2. In case
of porous membrane, geometric factors are diffe-
rent from those in eq. (5). The result is:

In[H/Ho]= — (6,Aut, pg/4pL, RO}t ®)

Here ¢, is pore density in the membrane and A,,
and L, are area and length of the membrane res-
pectively. 1, is the radius of the pore. Eq. (4) can
be used to determine the pore density with known
viscosity in Newtonian region.

If the viscosity of the polymer solution is depe-
ndent upon shear rate imposed, then analysis is
a little longer, but simple relationship can be ob-
tained for each case. It is based on the Rabinowi-
tch’s equation to relate flow rate and pressure
drop data to wall shear rate (y,) and wall shear
stress (t,):

1.=[3Q+Ap dQ/dApl/nr} @
T, =1 Ap/2L. ®

If egs. (2) and (3) are substituted into egs. (7)
and (8), non-Newtonian viscosity can be obtained.

Y= R%2r%) H{3H'/H+H"/H'} )
tw=(rpg/2L)H (10)
n=(pgr.//LR? {3H'/H+H"/H'} ! 68))
1000 §-

H(mm)

o 1000 2000
TIME (sec)
Fig. 2. Ln(H) vs. t for Newtonian Fluid in viscometer

in Fig. 1. a) High shear rate b) Low shear
rate

where H'=dH/dt and H"=d?H/dt®. Thus H(t)
data will supply us not only shear rate but also
shear stress. If polymer solutions are flowed th-
rough the fine pore, the coefficients are changed
accordingly.

Yo=R¥2Aner,") H{3H/H+H"/H'} 12)
o= (t,pg/2L,)H a3)
u=(Aneopgr,/L,R) {SH/H+H/H'}™'  (14)

If these equations are applied to the Newtonian
region, evaporation of the solvent causes a large
change in height compared with that of flow since
shear rate is too low. But it can be proven not
to affect on the above analysis if evaporation oc-
curs at same rate from both sides.

3. Results and Discussions

Fig. 3 shows shear viscosities of Xanthan solu-
tion of 400 ppm. It shows a typical thinning beha-
vior from shear rate 5/sec in capillary flow, which
is thought to be the case of infinite domain com-
pared with molecular scale. Power law index at
shear thinning is 0.734. Polyacrylamide solution
of 500 ppm shows similar but much weaker thin-
ning behavior with power law index 0.948. Visco-
sities of Xanthan solutions in fine pore are shown
in Fig.3 along with capillary data. As radius of
pore reduces apparent Newtonian viscosity dec-
reases as expected. But 1 um pore shows different

100[.

VISCOSITY (cp)
3

1 10 100 1000 10000
SHEAR RATE ( /sec)

Fig. 3. Shear Viscosity of Xanthan 400 ppm Solution,

Solid line: infinite domain, Others: fine pore
membranes.
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tendency due to the difficulty of flowing into such
a small region with Xanthan of characteristic le-
ngth L,=1.5 ym. Similar phenomena was observed
by Chauveteau [12]. Evaluation of characteristic
length of Xanthan will be discussed later. Polyacr-
ylamide solution always has decreasing tendency
as radius of pore decreases as shown in Fig. 4.
In case of Xanthan solutions, slope of shear thin-
ning region decreases as radius of pore decreases
up to 5um, which means apparent power law in-
dex will increase accordingly. If the radius of pore
is reduced further this tendency is reversed.
These are listed in Table 2. It could be due to
the end effect of the large pore case since the
length of the pore is not enough to reach a fully

Table 2. Xanthan solution of 400 ppm

=
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15

VISCOSITY (¢p)

osum

Xx x ® *x x x X X

100 1000

1.1

10
SHEAR RATE ( /sec)

Fig. 4. Shear Viscosity of Polyacrylamide 500 ppm
Solution, Solid line: infinite domain, Others:
fine pore membranes.

Pore Size Zero-shear Power Law Relative Dimensionless
Viscosity Index Size* Viscosity Diffusivity
um cp e=L/2r, D, X100
capillary 713 734 0.00 1.00 112
9.7(10) 4.92 779 0.16 0.64 2.68
7.8( 8 3.99 756 0.19 0.49 1.93
5.6( 5) 3.24 .866 0.27 0.37 1.08
2.6( 3) 2.52 778 0.58 0.25 0.85
1.9( 2) 2.30 576 0.78 0.21 1.00
96( 1) - 334 1.56 - -
*,=15um from eq. (16).
( ) means nominal size.
Table 3. Polyacrylamide solution of 500 rpm
Pore Size Zero-shear Power Law Relative Dimensionless
Viscosity Index Size* Viscosity
um cp e=L,/2r,
capillary 1.59 948 0.00 1.00
9.7(10) 1.57 952 0.04 0.97
7.9 8) 155 954 0.05 0.94
5.6( 5) 1.54 957 0.07 0.92
2.6( 3) 151 963 0.15 0.86
1.9( 2) 147 .960 0.21 0.81
96( 1) 1.38 967 041 0.65
72(.8) 1.34 979 0.54 0.50
.52(.6) 112 995 0.75 0.34

*L,=0.195 ym from eq. (18).
() means nominal size.
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developed flow. Therefore power law index seems
to decrease as pore diameter decreases if fully
developed flow can be achieved. Polyacrylamide
solutions show a different characteristics to have
a slightly increasing power law index as radius
of pore decreases, but it may be safe to conclude
to have same power law index within experimen-
tal errors. These are tabulated in Table 3. Now
zero-shear viscosity will be compared with known
theoretical predictions. In order to do that, the
molecular dimenions of the polymers should be
first evaluated.

For rigid polymer like Xanthan, it was sugges-
ted to evaluate macromolecular dimension from
intrinsic viscosity data (Bernoit ef al. [14]). If as-
pect ratio p is large enough (p>50), then viscosity
factor vo=[nJo/vy can be approximated by power
law:

vo=0.159 p'* (15)

Here v, is the specific volume, equal to 0.62 for
oligosaccharides. Aspect ratio p was calculated as
508 according to the experimental intrinsic visco-
sity of Xanthan, 7360 cm®/g. Once aspect ratio is
given, equivalent length of Xanthan, L, is estima-
ted from

L’=45/2nNy)[(nJM, (In2p—0.5) (16)

where N, is Avogadro’s number. L, was calculated
as 1.5 pm, which is nearly consistent with 1.15 ym
reported elsewhere (Chun ef al. [15]). Zero shear
viscosity due to polymer chains can be compared
with theoretical research (Park and Fuller [10])
as shown in Fig.5. Our experimental data and
Chauveteau [12] data are all in a single curve
when dimensionless polymer length based on pore
size. But theoretical predictions of viscosity reduc-
tion are much underestimated. The possible rea-
son is that simple shear flow was assumed instead
of Poiseuille flow for the theoretical predition bas-
ed on rigid dumbbell model, where the inhomoge-
neous flow effect was excluded.

For flexible polymer chain like polyacrylamide,
Flory-Fox equation tells us the relationship bet-
ween intrinsic viscosity and radius of gyration:

(n1=6" ¢{s>32/M, an
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Fig. 5. Zero-shear viscosity of Polymer Contribution
vs. dimensionless length of Xanthan, Solid line:
Theoretical Calculation based on Park & Fuller
(1985), *: Chauveteau (1982) data in glass
bead packing, +: Chauveteau (1982)'s data in
porous membranes, O: This work.

1.0
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" 0: THIS WORK
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Fig. 6. Zero-shear viscosity of Polymer Contribution
vs. dimensionless length of Polyacrylamide,
Solid line: Theoretical Calculation based on
Son & Park (1989), O: This work.

Here ¢ is Flory Fox parameter, 2.5X10% mol™!
and {s*»'? is root mean square radius of gyration.
With experimental value of intrinsic viscosity [n]
=1143 cm®/g and known M, =5.5X10% radius of
gyration {s*»>? was obtained 0.12 ym. Thus chara-
cteristic length of polyacylamide L, would be

L= (8/3)"2 (s?)2=0.195 um (18)

Based on this length scale, dimensioless viscosity
increment due to polymer chains is plotted against
relative polymer length to that of confining geo-
metry in Fig. 6. Experimental data was compared
with known theoretical calculation (Son and Park

The Korean J. of Rheology, Vol. 4, No. 1, 1992
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Fig. 7. Rotational Diffusivity vs. dimensionless length
of Xanthan.

[11]), where elastic dummbell model polymer in
rectilinear flow was considered. Agreement bet-
ween theory and experiment is fairly good.

One other thing we can think of is that rigid
polymer chains in confining geometry have lower
rotational diffusivity than in infinite domain. From
the transition point from Newtonian to shear thin-
ning it may be possible to estimate such reduction
of rotational diffusivity, which are tabulated in last
column of Table 3. Log(D,/D,) vs e=L,/r; is plot-
ted in Fig. 7.

Conclusions

Flows of polymer solutions in confined geome-
try is governed by relative length scale of polymer
chains to characteristic length of pores, when they
are comparable. In such a case, flexibility of poly-
mer chains plays a role for not only Newtonian
viscosity but also power law index in shear thin-
ning region.

Nomenclature
A,  area of the membrane
D, . rotational diffusivity
D, . rotational diffusivity in the infinite do-

main

o
22
Js(_l’
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LA
e : relative size (L./2r,)
g : gravitational acceleration constant
H . height
Ho . height at t=0
H’ : dH/dt
H” ;. d*H/dt?

: length of the capillary

. characteristic length of the polymers

L
L. . length of the membrane
L,

M, : molecular weight

Na . Avogadro’s number

P . aspect ratio

Q . flow rate

re . radius of the capillary

I, : radius of the pore

R . radius of the tube

{s»'2 : root mean square radius of gyration
t . time

Vo . viscosity factor

Ve - specific volume

& . pore density

u . viscosity

p . density

Yu . wall shear rate

Tw . wall shear stress

[n]  intrinsic viscosity

[nlo : intrinsic viscosity at zero shear rate
o . Flory-Fox parameter
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