120 EERE

(2) It has multiple resource types and multiple units of each resource type are required to ex-
ecute an activity. Each resource type is a “shared” ‘resource, If rli‘ units of resource type k are
required by activity i then they must be allocated exclusively to activity i for i’s entire duration.
When activity 1 is completed, resources allocated to activity i are released to be used in other ac-
tivities, ‘

(3) The start time of each activity should be assigned to satisfy given precedence relations and
resource constraints. Precedence relations are expressed in a standard activity —on—nodes (AON)
project network. Resource constraints simply state that the number of units of resource type k in
use at any time cannot exceed the overall availability of resoruce type k. This availability is
assumed known and constant throughout the entire project duration,

(4) The effectiveness of the schedule is evaluated by various objectives, e. g., the completion
time of the project, then, objective is to minimize project makespan,

The problem can be formulated in an intuitively simple and general fashion as follows:

Mimmize tp
subject to

tj 2 maximum {tj+dj} Vi € N (1)
i € p
and
Rk>y ¥ vtelo T-1]and V k € K (2)

iEN'
where,
t; = start time of activity i (decision variable), >0,
d; = duration of activity i,
p; =set of predecessor activities of activity i,
Rk = availability level of resource k,

N; = set of activities in process in time interval (t, t+1),

k

i = number of units of resource k required by activity i,

N={0,1,2, , n} : set of activities (with 0 and n the dummy activities “start” and “finish™),
K =set of resource (machine) types,

T = makespan of current schedule.

2. Disjunctive Graph Representation

Balas represents the job shop scheduling and the machine sequencing on a disjunctive graph [1],
[2]. A disjunctive graph G is denoted

An algorithm for resolution of resource conflicts in scheduling 121

G=(N, C, E),
Where N is the set of nodes, C the set of conjunctive arcs (precedence relations), and E the set

of disjunctive arcs.

Figure 1. An example of disjunctive graph.

Figure 1 illustrates such a disjunctive graph for a job shop scheduling example with 3 jobs and 3
machines. If NK denotes the operations pertaining to machine k, EK the set of disjunctive arcs for
machine k and an arc (i, j) the precedence relation of “from operation i to operation j”, then
N=u(NK:keK)=(0, 1, 2, =, 9}, C=U(0, 1), (1, 2), (2 9), (0, 3), -, (8, 9)}, and E=u
(Bk={(i, j), G, 1)}, Vi, j € NK and V k €K). Then the job shop scheduling or machine
sequencing problem reduces to that of finding a minimaximal path in a disjunctive graph [1].

In the multi—resource constrained project scheduling, however, since NKkNNl#¢ and an oper-
ation may require multiple units of multiple resource (machine) types as shown in Figure 2, the
cardinality of the set of disjunctive arcs E gets increased trememdously in Balas’ disjunctive graph
representation, Wherever the resource requirement of parallel activities exceeds the resource avail-
ability a disjunctive are must be introduced. Balas” disjunctive graph representation and approach

of solving the one—machine problem is not appropriate,

3. The Resolution of Resource Conflicts by Disjunctive Arcs

All of the exact solution techniques [4], [5], [10], [11], [13], [14] developed in the resource
constrained project scheduling are generally appropriate only for small—or moderate —~size problems

(e.g., up to 50 activities), This relative lack of success of optimization procedures in

122 EEHE

Figure ? A simple network example.

O—O—®

Act. No. Res. Req Duration Startime
0 (000) 0 0
1 (324) 6 0
2 (623) 7 6
3 (453) 2 0
4 (133) 4 2
5 (125 8 6
6 (414) 5 2
7 (325) 7 5
8 (152) 3 12
9 (000) 0 14

resource availabilities (10 10 10)

problems of realistic size motivated the development of heuristic sdlution methods which can gen-
erate reasonably good feasible solutions.

In previous heuristic methods which were “priority dispatching”™ procedures or variations, or
even in some optimal solution methods, a set of activities are sorted and scheduled up to the re-
source capacities. This process can be illustrated in the simple example in Figure 3 taken from
[13]. Figure 4 is its resulting branch and bound tree. Node 1 in the tree represents the only feas-
ible scheduling decision at time zero :to place activity 1, the dummy start activity, in an active
status. When activity 1 is completed, again at time zero, there are three possible feasible schedul-
ing decisions.

The first is to schedule activity 2 by itself (node 2 in the tree):the second is to schedule ac-
tivity 3 by itself (node 3);and the third is to schedule both activities 2 and 3 (node 4) since both
taken together do not require more units of resource than are available. Although Figure 4 shbws
the entire branch and bound tree for this problem, each path leading to a terminal node (nodes 20

through 25) can be interpreted as a sequence of decisions dispatching activities.

An algorithm for resolution of resource conflicts in scheduling 123

Given the network structure of the above problem which satisfies precedence constraints, the
scheduling problem can be narrowed down to the resolution of resource conflicts that are caused
by concurrent processing of activities in the network. Because the amounts of available resources

are not always sufficient to satisfy demands of concurrent activities, new sequencing

Figure 3. A simple example of a project scheduling problem.

D—O—O,
Activity No. Duration Resource Req. Start time
0 0

[=> RS2 BN SO R O
[ar T N S N
Q= DN e = O
O U = OO

Resource availability=2 units

decisions are required whenever resource constraints are violated. Such sequencing decisions,
which can be expressed in the network as the insertion of a new arc to the network, can lead to
an increase in project duration beyond that determined by the original critical path calculation
ignoring resource constraints., The objective is to make the required sequencing decisions so as to
minimize the increase in project duration, subject to given resource and precedence constraints,
Fulfillment of this objective would result in a minimum makespan schedule which satisfies both
given precedence constraints and resource usage constraints.

A new approach in scheduling activities is to utilize the idea of a disjunctive constraint of Balas
[2] to express alternative ways of resolving resource conflicts, A hypothetical schedule is
constructed in which each activity starts at its earliest possible time with respect to original pre-
cedence constraints (as shown in the network of Figure 3). This schedule can be found by solving
the mathematical formulation without constraint (2) in the section 1. This schedule is then
examined for possible sets of activities whose concurrent execution causes resource violation, A set
of activities Nt which together require more units than available of at least one resource at time
interval (t, t+1) is called a violating set. For any such violating sets, all subsets which are mini-
mal resource violating sets (MRV'S) are indentified and considered for the resolution of resource

conflicts. A minimal violating set S is a violating set with no violating proper subsets. Then the

124 HEME

most early recognized MRVS is resolved by adding one of disjunctive arcs from disjunctive

constraints
Figure 4. The branch and bound tree
1:0
{1:{1
l
f | |
2:0 3:0 4:0
{2} : {2 {3} : {3} {2,3}: 42,3}
I
I 1
5:1 6:1 7:4 8:1
{3} : {3 {4 {4 {2 {2 3}:¢
' |
9:5 10:5 11:5 125 13:5 14 :4
{4} : {4} {31: {3 {5} : {5} (3.5} : 3.5} 4} 4 {4} {4}
15:9 16:9 17:9 18:9 19:8
{5} : {5} {5} : {5} {31 : {3} {5} : {5} {5} : {5}
20 : 13 21 : 13 22 113 2319 24 : 13 25:12
{6} : {6} {6} : {6} {6} : {6} {6} : 6} {6} : {6} {6} : {6}
Legend ; where : n = node no,
n:t
Ap rhsl t, = scheduled time
A =active set
F5 =set of activities starting at tp
Figure 5. Minimal Resource Violating Set sat each time interval in the simple example.
time interval (t, t+1) resource violating sets
0 NIL
1 ((a4 a3))
2 ((a4 a3))
3 ((a4 a3))
4 NIL
5 NIL
6 NIL
7 NIL
8 NIL

An algorithm for resolution of resource conflicts in scheduling 125

tj —tizdini—tj Zdj, Vij€S VScN

The MRVS’s of the simple in Figure 3 are shown in Figure 5, MRVS of activity 4 and activity
3 generates disjunctive arcs (4, 3) and (3, 4). This resource violation is resolved by choosing a
disjunctive arc which is guided by heuristic rules, e. g., minimize the resulting increase in project
duration, With this heuristic, the disjunctive arc (4, 3) is selected to be inserted into the network
since it does not increase the project duration while inserting (3, 4) would increase the project
duration by 3 time units, A new network is determined. All activities are scheduled at their
earliest times with respect to the network and this procedure is repeated until there are no more
MRVS’. In this example, addition of the single disjunctive arc .(4, 3) resolved all resource
conflicts,

Even though the final solution by this method is the same as that found by a traditional priority
dispatching procedure, the approaches used in sequencing conflicting activities are completely dif-
ferent. A priority dispatching procedure assembles a schedule by dispatching activities as time
goes on. The effect of the sequencing procedure on the network cannot be readily observed. The
new approach puts arcs into the precedence network for the resolution of resource conflicts. That
1s, while the traditional method is to schedule activities at a particular instant as long as resources
are available and then to move on to the next appropriate scheduling instant, the new approach is
to delay one of the conflicting activities by adding a new precedence (disjunctive) arc. Disjunctive
constraints are easily recognized and can be remembered. This makes it possible to change the de-
cision on which arc to add to the network. Thus, after adding arc (4, 3), it is possible to retract

this arc and add (3, 4) instead. This option is used in the post —analysis phase explained below,
4. A New Algorithm

The algorithm has two phases([3], [9]) : (1) phase 1 (schedule generation phase) to generate a
network whose early time schedule is found by successively repairing resource violations until no
resource constraint violations remain (an “early time schedule” has each activity scheduled at its
earliest possible time) and (2) phase 2 (limited search post—analysis phase) to use a limited
search technique which examines the critical path of this network and attempts to find local
improvements in the schedule. In both phase 1 and phase 2 the new heuristic algorithm always
make choices with a certain objective in mind. In the following explanation we assume that the
objective is to minimize the makespan of a project,

Phase 1, the schedule generation phase, is executed without backtracking. The algorithm

analyzes the current set of expressed precedence constraints and recognizes resource violations,

126 BELS

It then finds a resource violating set of activities by examining the “early time schedule” implied
by the current precedence constraints.

If a minimal resource violating set S is found with activities {a;, aj, e , 3}, the algorithm
then “decides” which disjunctive arc, e. g., in the form of aj—aj, should be added to the network.
Various decision rules are possible, Thus the behavior of the schedule generation phase of the al-
gorithm is determined by its choice of resource violating set (if there are two ‘or more) and its de-
cision rule for adding an arc to guarantee that not all members of the chosen resource violating
set can be executed concurrently. As currently implemented, the new algorithm scans the early
time schedule starting at time 0 and finds the first time interval (t, t+1) with one or more
MRVS’s.

The choice of an appropriate disjunctive arc among (ai——»aj)’s generated from S is decided by

the following lexicographic rule :

(i) select aj—a;j such that
miminum EFT; + (T - LST)),
aj—*aj
(i) select aj—~a; among disjunctive arcs still consideration such that
minimum EST;,
aj—3;
where EFT; denotes the earliest finish time of activity i, LSTj the latest start time of activity j
and EST; the earliest start time of activity i.

When all resource violations are resolved the first feasible solution is found in early time sched-
ule. The first phase can be illustrated by the example of Figure 2. The starting network and its
associated early time schedule (ignoring resource constraints) is shown in Figure 2 and its Gantt
chart in Figure 6. The first MRVS can be recognized in time interval (0, 1) as the set of activi-
ties {al, a3, a6}, Having found an MRVS, {al, a3, a6}, one of al—a3, al—a6, a3—al, a3—a6, at—
al, and a6—a3 can be selected. By adding an arc a3—al, the critical path length remains un-
changed.

In the revised network including arc a3—al, the first MRVS can be found in time interval (2,
3) as the set {al, a4, ab). Adding arc a6—a4 will cause the least increase in critical path length.
The process is continued until a network with no resource violating sets is finally reached. When
the first feasible schedule is found following arcs have been added : a3—al, a6—a4, al—a7, a4—a2,
and a7—a2, and the resulting critical path length is 22. This solution will be used as the root node

in the second phase,

An algorithm for resolution of resource conflicts in scheduling 127

In phase 1, arcs were added to the original precedence network in a somewhat myopic fashion
(to correct a particular resource violation), It might well be the case that one or more arcs added
through this process are no longer needed. Thus, whenever we have just found a feasible solution,
we execute a simple procedure, Clean_Up . Network, to remove any added arcs which have be-

come redundant. Removing such redundant arcs has no impact on the makespan of the

Figure 6. Gantt chart for a project scheduling problem.
1 2
3 4 5
6 7 8 resource requirement
1|18 {8|8|7|10{10|/10{10[10|10] 8 |2 |1 |« resource type]
8|86 |[616|7|6|6]6|6[6|6]9]7 <—+- resource type 2
10 (11|11 (11|11 |12 13|13 |13|13{13{13]10| 7 | 2 |< resource type 3

0 5 10 15

current feasible solution, but can have a beneficial impact later as the limited search phase 2
proceeds : less computation time and possible better solution due to less—constrained network.

Clean _Up_Network works very simply. Added arcs are examined in turn. If an added arc can
be removed from the network without destroying feasibility, then this is done. Otherwise, the
added arc is left in the network. Thus, after executing Clean_Up_ Network, the remaining set of
added arcs is a subset of the set of added arcs associated with the current feasible schedule when
it was first descovered. Among newly added arcs in the example, the added arc ad—a2 turns out
redundant and is removed. The solution, now, is updated as a3—al, a6—ad4, al—a7, and a7—a2.
Gantt chart of the first feasible schedule is shown in Figure 7.

In the second phase we exanime, in turn, the effect of removing each of the added arcs on the
critical path and using the resulting network (which will typically now have at least one resource
violation) as a starting point for generating a new feasible solution. In each case, the addition of
every alternative arc for correcting the newly revealed resource violation is explored. After putting
in one such arc, the phase 1 heuristic is then used to find a new solution, These efforts are aban-
doned as soon as we can demonstrate that any new solution found by this heuristic will not im-
prove on the incumbent best feasible solution. If an improved solution is found, the process of

phase 2 is repeated starting with that solution.

128 REHNE

Figure 7. Gantt chart of the first feasible solution.
3 1 7 2
6 4 5 8
8 |8 717|744 |4|4)| 4| 4] 4| 4| 47 48] 8]716]|6]|6]6
61633 [3(5|5 |5 |5 4| 4| 4] 4] 441997 |2]|2}{2]2
7178|887 |7(7|8j10110]10|10|10]|10|0Of10|{5 3|3 |3]|3
0 5 10 15 20

Thus the entire algorithm can be described by the procedure Search_For_Network with
pseudocode presented below. Incumbent _Solution is a global variable, initially nil. Makespan (In-
cumbent _Solution) returns a large positive number if Incumbent _Solution is nil, otherwise it
returns the actual makespan, Added_ Critical _ Arcs (Network) returns a list of all arcs which are
on the critical path of Network and which were not in the original precedence
network. Add _Arc (Arc, Network) and Remove _ Arc (Arc, Network) each return a new Network
with the given Arc either added or removed. The critical procedure which affects performance is
Violating _Sets (Network) which returns resource violating sets for a Network known to contain
at least one. If Violating Sets (Network) is nil, Feasible (Network) becomes true.
Alternative _Arcs (Arc, VS) generates possible disjunctive arcs one of which is to be added to
the network to “break up” the violating set VS, and Arc_To Add (VS, Network) returns an ap-

propriate arc to be added to the network. Network, VS, Alternative and Arc are local variables,

PROCEDURE Search _For Network (Network)
IF Makespan (Network) < Makespan (Incumbent _Solution) THEN
IF Feasible (Network) THEN
Clean _Up_Network (Network) ;
Incumbent _ Solution < Network
FOR Arc in Added_Critical _ Arcs (Network) DO
Network «— Remove Arc (Arc, Network) ;
VS « Violating _Sets (Network) ;
FOR Alternative in Alternative Arcs (Arc, VS) DO
Search _For_Network (Add_ Arc (Alternative, Network)) :
ENDFOR .
Network « Add _ Arc (Arc, Network)
ENDFOR

An algorithm for resolution of resource conflicts in scheduling 129

ELSE
VS « Violating _ Sets (Network) ;
Arc «— Arc_To_Add (VS, Network) :
Search _For _Network (Add _ Arc (Arc, Network))
ENDIF
ENDIF
ENDPROCEDURE.

Returning to the numerical example, the feasible solution generated by the first phase included
the following additional arcs:a3—al, a6—a4, al—a7, a7—a2 The critical path is analyzed and
found to contain the following added arcs : a3—al, al—a7, a7-+a2. Each of these arcs in the criti-

cal path is removed in turn from the network to investigate the building of alternative feasible

solutions,
Figure 8. Search tree in post—analysis.
OF
remove remove
a3->al a7->a2
remove
al->a7’
remove remove
al->a7

In Figure 8, the first feasible solution is represented by node (. The first arc in the critical
path, a3-+al is replaced by the alternative arc a6—a3 and an improved solution (node 2) with
makespan 20 is found immediately. The set of added arcs in this solution arcs is {a6—a3, a6—ad,
al—a7, a7—a2}. Clean_Up_ Network allows the removal of an arc a6—a4 from the improved sol-
ution. The phase 2 process is repeated with the improved solution : a6—~a3, al—a7, a7—a2 (only
al—a7 and a7—a2 on the critical path). Further attempts to improve the solution prove fruitless
(all other node in the search tree in Figure 8 are pruned by the incumbent makespan 20). Gantt

charts of the first feasible solution and the final solution are shown in Figure 9.

130 FEEHS

Figure 9. Gantt chart of the final solution.
8
1 7 2
6 3 4 5
7171771 7|7 7414|444} 4|81 8| 8|7|7T}7]|6
31313 (3137755515 4| 4] 9] 91 9|4i4]|4]|32
8181888 |7|8 (|88 |8 |8 }|10|10|10|10|108|81}]8]3

5. Results of Computational Experiments

The experiment consisted of successively solving 110 single project, 56 multiproject and 40 job
shop scheduling problems, Those 110 problems, used in [12], represent an accumulation of all
single project scheduling problems existing in the literature today.

For the 56 multiproject scheduling problems, eight mock projects were formulated by modifying
those in [7]. The ratio of number of arcs to number of activities in these problems varied between
1.0 and 2.0. Activity durations varied between 1 and 9 time units and were generated using the
Beta distribution with parameters a=b=0.5 and range [1,9]. Observations were rounded to the
nearest integer.

Each activity is assumed to require 0, 1, 2, or 3 units of each of three scarce resource types.
Such resource requirements were generated randomly from the discrete uniform distribution on [0,
3]. These resource requirements were assigned before the experiment was begun and were not
changed during the experiment. Resource availability of six units of each resource at each time in-
stant was assumed. All combinations of three mock projects in parallel were constructed to make
56 multiproject problems, The earliest start time of each project in the project set was generated
randomly from the discrete uniform distribution on [0, 20].

The 40 job shop scheduling problems are those adapted from [1]. In these problems, each job is
to be processed on every machine, the sequence of machine for each job is random, and the
processing times are randomly drawn integers from the inteval [5,99].

Given the set of 110 test problems, we first selected 83 problems identical to those in [6]. For

the 83 problems chosen initially, Table 1 gives a comparison of the performance of the new heu-—

An algorithm for resolution of resource conflicts in scheduling 131

ristic solution with known optima. The new algorithm gave an average increase of 5.7% above the
optimum makespan for the first feasible solution found. The limited search second phase of the
new algorithm reduced this average increase to 3.1% above the optimum. The new heuristic algor-
ithm outperformed all other heuristic rules in [6].

Based on the survey of previous research, six heuristic rules were selected for the multiproject
scheduling problems, For the detailed explanations of each heuristic rule see [9]. Each of Table 2
through 4 shows a performance comparison of the new algorithm with a priority dispatching pro-
cedure in each of the heuristic rules. In 56 multiproject problems, three rules, LET, MINSLK, and
RSM*I, constitute a group which produced generally better results than the other three, When
comparing the performance of the new algorithm to that of a priority dispatching procedure, it was
found that the performance of LET in priority dispatching was almost equivalent to that of LFT,
MINSLK, and RSM* in the new heuristic algorithm even though RSM* in the new algorithm
performed slightly better. However, given similar performance in the total delay criterion, RSM*
in the new algorithm performed best in minimizing total resource idle time (which can be
interpreted as minimizing makespan of the project set). For example, RSM* in the new algorithm
produced 366 time units total resource idle time on the average while the next best idle time was

430 time units by LF'T in the priority dispatching procedure.

Table 1. Comparison of heuristic and optimal solutions for 83 problems.
Phase 1 Phase 2 (6]
%diff sol’'n %6diff sol'n %diff
mean 5.7 36.2 31 35.3 5.6
S.D. 4.6 7.8 3.2 7.5 6.1
Table 2. Comparisons in total delay of multi project sheduling problems.
the new algorithm priority dispatching procedure
grd 1ft minslk | rsm* sjf ran grd Ift minslk [rsm* s)f
mean | 62.1 46.0 45.2 44.2 56.8 59.5 70.5 45,2 50.1 66.7 70.6

1 : the heuristic rule used in this research : a variation of RSM in {3].

132 EERE

Table 3. Comparisons in weighted totat delay of muiti project scheduling problems.
the new algorithm priority dispatching procedure
grd Ift minslk | rsm* sjf ran grd Ift |minslk | rsm* sjf
mean | 3278 2574 2533 2536 3073 | 3282 | 3642 | 2528 | 2865 | 3465 | 3552

Table 4. Comparisons in total resource idle time of multi project scheduling problems
out heuristic algorithm priority dispatching procedure
grd 1ft minslk | rsm* sjf ran grd ift minslk | rsm* sjf
mean 435 495 478 366 483 479 395 430 464 404 526

Table 5. The number of best solutions produced by each heuristic rule.

the new algorithm priority dispatching procedure

grd Ift |minslk | rsm* sjf grd Ift |minslk| rsm* sjf

total delay 0 10 12 23 2 0 16 7 0 0
weighted total delay 0 8 11 20 3 0 10
idle time 3 0 2 29 2 12 2 4 9 0

A different aspect of performance comparison is shown in Table 5 which gives data in terms of
the number of times each rule produced the best solution (including ties) out of 56 test problems.
In each performance criterion RMS¥* in the new algorithm found a shortest —total —delay schedule
most often, followed by LFT in priority dispatching procedure. GRD and SJF rules performed
worst in general, While these results are hardly surprising, they support earlier observations and il-
lustrate that there seems to be a strong coupling between the RSM* rule and the new algorithm,

In overall performance, in terms of the number of best solution (excluding ties) produced by

An algorithm for resolution of resource conflicts in scheduling 133

each method, the new method produced the least —total ~delay solution in 35 problems and the pri-
ority dispatching procedure generated the best schedule in 13 problems.

On the 40 job shop scheduling problems the new algorithm outperformed the priority dispatching
procedure as shown in Table 6 :4.7% (on the average) improvement in the solution, even though
Adame, Balas and Zawack had produced better solutions in [1] : 8.5% improvement. However, one
of the advantages of our new algorithm is that it can be applied to both project scheduling and
job shop scheduling while the method in [1] is applicable only to job shop problems. It can be
suggested that the new algorithm be refined to be able to take advantage of the characteristics of

the job shop problem to be more effective.
6. Conclusions

Scheduling is a challenging but potentially very frustrating decision—making problem, Even
though the problem is easy to state and to visualize, the substantial literature does not include
any sophisticated and clever way of finding an exact optimal solution to the problem of project
and job shop scheduling. This is not surprising since the problem is known to be NP —complete
[8]. Therefore heuristic solution schemes have been utilized to get reasonably good solutions in
short computation times. Here we developed a new approach to finding a heuristic solution to the
project scheduling. It works in job shop scheduling as well.

In addition to the advantage of simplicity and effectiveness, the new heuristic method has sev-
eral unique characteristics :

(1) The new algorithm utilizes a philosophically different approach in generating a feasible
schedule : namely, it adds one new precedence arc at a time to repair a resource violation, Particu-
larly, since the representation scheme of this approach is compatible with those of Al automated
planning systems such as NONLIN [15], DEVISER [16], etc. this philosophical approach can be
implemented into those systems.

(2) The new algorithm employs an inexpensive limited search technique in the second phase to
seek an improvement in the first found feasible solution. Direct comparison of computational times
with those of other approaches for the same problems is difficult since prior studies, whose pro-
gramming codes are not available, used mainframe computers and languages such as Fortran while
computations reported in this paper were performed on an Apple Machintosh SE using a version of
Common Lisp.,

(3) The new algorithm works better as resource availabilities get larger so that fewer violating
sets exist in the network while the existing algorithms (including exact algorithms) do worse.

That is, existing algorithms which utilize the ‘schedulable subsets’ at each iteration of

134 RBERE

Table 6. Performance comparison in job shop scheduling problems
problems priority phase 1 phase 2 Adams et al.
dispatching | makespan % makespan % makespan %

1 679 679 0.0 666 -1.9 666 -1.9
2 792 838 5.8 724 —8.6 669 —15.5
3 673 735 9.2 673 0.0 - 605 -10.1
4 670 696 3.9 639 —4.6 593 -11.5
5 594 612 3.0 606 2.0 593 -0.2
6 927 926 -0.1 926 -0.1 926 -0.1
7 947 1014 7.1 890 —6.0 890 -6.0
8 880 896 1.8 874 —-0.7 863 —-1.9
9 952 968 1.7 951 -0.1 951 0.1
10 959 958 -0.1 958 -0.1 959 0.0
11 1223 1231 0.7 1222 -0.1 1222 -0.1
12 1041 1039 -0.2 1039 -0.2 1039 -0.2
13 1151 1174 2.0 1150 -0.1 1150 -0.1
14 1293 1292 -0.1 1292 -0.1 1292 -0.1
15 1320 1268 -39 1207 —8.6 1207 -8.6
16 1036 1101 6.3 1005 -3.0 978 —5.6
17 857 826 -3.6 814 =5.0 787 -8.2
18 897 963 7.4 924 3.0 859 —4.2
19 926 954 3.0 917 -1.0 860 -7.1
20 1001 1046 4.5 986 -15 914 -8.7
21 1208 1193 —-1.2 1153 —4.6 1084 —10.3
22 1085 1060 -2.3 1004 -17.5 944 -13.0
23 1163 1139 -21 1102 =52 1032 -11.3
24 1142 1153 1.0 1007 -11.8 976 —14.5
25 1259 1154 —8.3 1058 -16.0 1017 -19.2
26 1373 1373 0.0 1288 -6.2 1224 -10.9
27 1472 1517 3.1 1384 —6.0 1291 -12.3
28 1475 1449 -1.8 1411 —4.3 1250 —15.3
29 1539 1360 -11.6 1290 —16.2 1239 —19.5
30 1604 1460 -9.0 1424 -11.2 1355 —15.5
31 1935 1906 -15 1846 —4.6 1784 -7.8
32 1969 1871 —5.0 1850 —6.0 1850 —6.0
33 1871 1860 —0.6 1754 —6.3 1719 -8.1
34 1926 1833 —4.8 1749 -9.2 1721 —10.6
35 2097 2057 -1.9 1889 —-9.9 1888 —10.0
36 1517 1415 -6.7 1404 —7.4 1305 —14.0
37 1670 1590 —4.8 1507 -9.8 1423 —14.8
38 1405 1459 3.8 1364 -2.9 1255 -10.7
39 1436 1571 9.4 1435 -0.1 1273 —11.4
40 1477 1437 -2.7 1395 -5.6 1269 -14.1
mean 0.0 —4.7 —85

An algorithm for resolution of resource conflicts in scheduling 135

execution generate more choices at each decision point as resource constraints get less tight, An
increase in the number of possible schedulable subsets (higher branching factor in the search tree)
due to greater resource availability makes the search tree bushier and requires that the algorithm
do more work. However, the new algorithm requires less work because there are fewer resource
violating sets when resource availability is increased.

Finally, some possible relaxations in the assumptions can be considered. Often, a given problem
type or a practical real problem does not satisfy all of the assumptions built in to the design of
the new algorithm, Two possible relaxations and recommendations for modifications are provided
below,

(1) Relaxation of constant resource usage assumption : This relaxation can be achieved by split-
ting an activity into a sequence of activities each of which employ a constant resource usage.
However, when an activity is split into a sequence of activities in this manner, the sequence is re-
stricted to be continuously executed since the original activity is required to be processed without
preemption,

(2) Relaxation of constant resource availability assumption : Where the quantity of resources
available over a schedule duration varies (caused by such factors as absenteeism, vacations, ma-
chine check—up schedule, etc), the simple way to accomplish this would be to use a dummy ac-
tivity. Whenever a resource availability goes down from its highest availability level for a certain
duration, such a dummy activity of that duration is introduced that requires a level of resource
consumption equal to the difference between highest and actual availability level. This relaxation
also requires some additional modelling. If the availability of resource r is dropped from its maxi-
mum level during the fixed time interval [t, t+d] then the dummy activity representing this de-
crease must be guaranteed to start exactly at time t and finish exactly at time t-d,

Thus, there appear to be significant opportunities for future research on scheduling problems.
This and prior investigations have revealed that exact solution approaches are not promising due
to the disjunctive nature of resource constraint. However, the new approach to developing heuris-

tic methods used in this paper might well be adapted to other contexts with relaxed assumptions,

136 EERE

10.

11,

12.

13.

14.

REFERENCES

J. Adams, E. Balas and D, Zawack, “The Shifting Bottleneck Procedure for Job Shop Schedul-
ing”, Management Science, Vol. 34, No. 3, pp. 391—401, 1988.

. E. Balas, “Machine Sequencing Via Disjunctive Graphs : An Implicit Enumeration Algorithm”,

Operations Research, Vol. 17, No. 6, pp. 941 —957, 1969.

. C.E. Bell and J. Han, “A New Heuristic Solution Method in Resource —Constrained Project

Scheduling”, Naval Research Logistics, Vol. 38, pp. 315—331, 1991

. 1.D. Brand, W.L. Meyer, and L.R. Shaffer, “The Resource Scheduling Problem in Construc-

tion”, Civil Engineering Studies, Report No.5 Department of Civil Engineering, University of
Illinois, Urbana, 1L, 1964.

E.W. Davis and G.E. Heidorn, “An Algorithm for Optimal Project Scheduling Under Multiple
Resource Constraints”, Management Science, Vol. 17, No. 12, pp. B803—B816, 1971.

 E.W. Davis and J.H. Patterson, “A Comparison of Heuristic and Optimum Solutions in Re-

source —Constrained Project Scheduling”, Management Science, Vol. 21, No. 8, pp. 944—955,
1975.

. L.G. Fendley, “Toward the Development of a Complete Multiproject Scheduling System”,

Journal of Industrial Engineering, Vol. 19, No. 10, pp. 505—515, 1968.

. M.R. Garey and D.S. Johnson, Computers and Intractability :a Guide to the Theory of

NP —Completeness, Freeman, San Francisco, 1979.

J. Han, “A New Heuristic Algorithm for Resource —Constrained Project Scheduling”, Unpub-
lished Ph. D. Thesis, University of Iowa, Iowa City, TA, 1988.

T.J.R. Johnson, “An Algorithm for the Resource—Constrained Project Scheduling Problem”,
Unpublished Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1967.

J.H. Patterson and G. Roth, “Scheduling a Project under Multiple Resource Constraints : A
Zero—One Programming Approach”, AIIE Transactions, Vol. 8, No. 3, pp. 449—456, 1976.

J.H. Patterson, “A Comparison of Exact Approaches for Solving the Multiple Constrained Re-
source, Project Scheduling Problem”, Management Science, Vol. 30, No. 7, pp. 854—867, 1934.

J.P. Stinson, E.W. Davis and B.M. Khumawala, “Multiple Resource—Constrained Scheduling
Using Branch and Bound”, AIIE Transactions, Vol. 10, No. 3, pp. 252—259, 1978.

F.B. Talbot and J.H. Patterson, “An Efficient Integer Programming Algorithm with Network
Cuts for Solving Resource—Constrained Scheduling Problems”, Management Science, Vol. 24,
No. 11, pp. 1163—1174, 1978.

An algorithm for resolution of resource conflicts in scheduling 137

15. A. Tate, “Project Planning using a Hierarchical Nonlinear Planner”, Department of Artificial
Intelligence Report 25, University of Edinburgh, UK, 1976.

16. S.A. Vere, “Planning in Time : Windows and Durations for Activities and Goals”, IEEE
Transactions on Pattern Analysis and Machine Intelligince, PAMI—5, No. 3, pPp. 246—267,
1983.

