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Multiple Product Single Facility
Stockout Avoidance Problem (SAP)
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Abstract

We study the Multiple Product Single Facility Stockout Avoidance Problem (SAP). That is
the problem of determining, given initial inventories, whether there is a multiple product single
facility production schedule that avoids stockouts over a given time horizon.lThe optimization
version of the SAP where stockouts are penalized linerarly is also studied. We call this problem
the Weighted Stockout Problem (WSP). Both problems are NP-hard in the strong sense. We de-
velop Mixed Integer Linear Programming (MIP) formulations for both the SAP and the WSP.
In addition, several heuristic algorithms are presented and performances are tested using
computational experiments. We show that there exist polynomial algorithms for some special
cases of the SAP and the WSP. We also present a method to phase into a target cyclic schedule
for infinite horizon problems. These can be used as a practical scheduling tool for temporarily

overloaded facilities or to reschedule production after a disruption.

1. Introduction

We study the Multiple Product Single Facility Stockout Avoidance Problem (SAP), which
was proven NP-hard in the strong sense for both finite and infinite horizons by Arkin et. al
[2]. See also Anderson [1]. We also study an optimization version of the finite horizon SAP,
in which demands which are not met are lost, and where stockouts are penalized linearly in
their duration, We call this the Weighted Stockout Problem (WSP). Arkin et, al [2] gave a
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simple proof that WSP is NP-hard in the strong sense by reduction to the Weighted Tardi-
ness Problem. (See Baker [3] for the definition of the Weighted Tardiness Problem.)

Both the SAP and the WSP are closely related to the Economic Lot Scheduling Problem
(ELSP). The ELSP is the problem of scheduling the production of several items in a single
facility so that demands are met without stockouts or backorders and the long run average
inventory carrying and setup costs are minimized. This problem occurs in many production

situations (Boctor [4]), for example in

(a) Metal forming and plastic production lines (press lines and plastic and metal extrusion
machines) where each product requires a different die to set up on the machine.

(b) Assembly lines which produce several products and /or different product models (electric
appliances, motor cars, etc.)

(¢) Blending and mixing facilities (paints, beverages, animal food, etc.) in which different
products are poured into different containers,

(d) Weaving production lines (textiles, carpets, etc.) in which the main products are

manufactured in different colors, widths, and grades.

The ELSP has been widely studied over 35 years. See Dobson {7], Gallego and Moon [9],
Glass [11], Moon et. al [14], Moon and Hwang [15] for recent contributions. In the ELSP it
is typically assumed that production and demand rates are known item dependent constants,
and that setup times and setup costs are known item dependent, but sequence independent
constants, In addition, research in the ELSP has focused on cyclic schedules, i.e. schedules
that are repeated periodically. Moreover, almost all researchers have restricted attention to
cyclic schedules that satisfy the Zero Switch Rule (ZSR).This rule states that a production
run for any particular item can be started only if its physical inventory is zero,
Counterexamples to the optimality of this rule have been found, but they tend to be patho-
logical in nature. It is difficult to construct reasonable examples where the ZSR does not
give a near-optimal solution.

There are two main approaches for heuristic algorithms. One is the basic period approach.
In addition to the ZSR this approach requires every item to be produced at equally-spaced
intervals of time that are multiples of a basic time period. (This together with the ZSR
implies that every item is produced in equal lot sizes.) Most of the heuristic algorithms that
follow this approach first select the frequency (i.e. number of production runs per cycle)
with which each item is to be produced, and then search for a feasible schedule that
implements these frequencies. See Elmaghraby [8] for an excellent review., Under this ap-

proach it is NP-hard to determine the existence of a feasible schedule (see Hsu [12]). These
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difficulties have led some researchers to reject the basic-period paradigm, in particular the re-
quirement of equally spaced production lots.

The time-varying approach which relaxes the restriction of equally spaced producion runs
was initiated by Maxwell [13] and Delporte and Thomas [5]. Dobson [6] shows that any pro-
duction sequence (i.e. the order in which the items are produéed in a cycle) can be
converted into a feasible schedule in which the quantities and timing of production lots are
not necessarily equal provided that the proportion of time available for setups is postive. He
also developed a bin-packing heuristic to determine a sensible production sequence. Optimal or
near optimal schedules can be obtained by combining Dobson’s heuristic with Zipkin's [16] al-
gorithm, Recently, Gallego and Xiao [10] showed that the ELSP is NP-hard under this ap-
proach even without the ZSR restriction. _

Research on the ELSP has concentrated on cyclic schedules, i.e. schedules that repeat
periodically. An implicit assumption, universally imposed, is that the inventories required to
start a cyclic schedule can be acquired instantly and at no cost. This assumption is almost
never satisfied in practice. In fact, if inventories are low, the primary concern of manage-
ment would be to avoid stockouts (as far as it is possible) until emergency relief becomes
available through overtime, temporary use of an additional machine, or external procurement,
The problem of avoiding stockouts also emerges after a schedule disruption, such as a ma-
chine breakdown, leaves the inventory levels critically low,

This gives rise to the SAP:the problem of finding a schedule, if such exists, that avoids
stockouts over a given finite horizon from a given configuration of initial inventories. The
WSP is an optimization version of the SAP. It occurs when a single facility feeds different
production lines and the stockout costs are proportional to the length of the stockout period
during which the lines are starved. When stockouts are expensive and inventories are low,
managers may want to minimize the cost of stockouts up to a time, say 7, when inventories
can be replenished, for instance during a weekend, or when demand ceases to exist, e.g. at
the end of a model year. The WSP is sometimes encountered in metal stamping in the auto-
mobile industry.

Over an infinite horizon we are also concerned with holding and setup costs. For this
reason we only consider the finite horizon versions of the SAP and WSP where these costs
are ignored. We show how the WSP can be used to phase into target inventories from which
an efficient (in terms of holding and setup costs) cyclic schedule can be followed. In this
way the WSP can be used as a scheduling tool for temporarily overloaded facilities unti] the
normal load condition is recovered. For example, if there is a sudden increase in demand or if

a facility temporarily takes the burden of another facility while the latter is being repaired.
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Anderson [1] considered the SAP over an infinite horizon and proposed a heuristic solution,
His heuristic distregards cost information and attempts to find a cyclic schedule where the
initial inventory levels are reached again at some future time., We have identified several
weak points in Anderson’s approach. First, the heuristic clearly fails if all the inventories are
sufficiently low, and Anderson does not offer any advice on what to do in this case. Second,
Anderson’s approach is based on the idea of finding a cyclic schedule that recovers the initial
inventories, Thus, the heuristic may call for an intricate sequence of production runs to get
out of trouble only to go back into it. Third, Anderson tries to find a solution over the infi-
nite horizon, where it may suffice to stay out of trouble until the end of the week or until
another machine that is currently under repair is on working conditions. Fourth, the approach
ignores cost and so allows production sequence that may be economically undesirable, We feel
that it is more sensible to phase into a good target schedule where setup and inventory
carryiong costs are also taken into account, The heuristic could not be tested for effective-
ness since Anderson had no machinery to check whether there exists a feasible schedule,

We develop a Mixed Integer Linear Programming (MIP) formulation for the WSP. A simi-
lar formulation is applied to the SAP after some necessary conditions are verified. We show
that some special cases of the SAP and WSP can be solved in polynomial time. For in-
stance, given a production sequence, both problems can be solved by Linear Programming
(LP). When the production sequence is restricted to product permutations, the SAP can be
solved in polynomial time, But the WSP remains NP-hard/ Here, permutation sequence
means that the facility setups at most once for each product and f denotes a general se-
quence. Table 1 and 2 show the relationships between the SAP and the WSP.

The rest of this paper is organized as follows. In Section 2, we prove basic properties of
optimal schedules and formulate the WSP. We formulate the WSP when the sequence is re-

stricted to permutations and give the relationship between the solution procedures for the

Table 1. Complexity of the WSP

sequence complexity solution
restriction method
none NP-hard MIP

(Arkin et. al [2]) (this paper)
permutation NP-hard MIP
sequence (Arkin et, al [2]) {this paper)
given f polynomial LP

(this paper) (this paper)




$17% 3%  Multiple Product Single Facility Stockout Avoidance Problem (SAP) and Weighted Stockout Problem (WSP) 141

Table 2. Complexity of the SAP

sequence complexity solution
restriction method
none NP-hard MIP

(Arkin et. at [2])
(Anderson [11)

(this paper)

permutation O(mlogm) yes
sequence (this paper) (this paper)
given f polynomial LP

(this paper)

(this paper)

WSP and the SAP. In Section 3, we explore special cases where the problems are polynomially

solvable. Heuristics for the WSP are developed in Section 4. In Section 5, we show how the

WSP can be modified so that target inventory levels are achieved at a given future point in

time. We also present a method to phase into a cyclic schedule after a finite horizon.

2. Formulation

The data for the WSP and SAP-finite are:

the index for the products
constant demand rates
constant production rates
known setup times

known initial inventories
known stockout penalties

length of planning horizon

di

b
S
Ji
pi
T

.--‘m
"'ym

...’m

--.m
LRy 774
M

The demand rates be normalized to one by dividing the original p’s, Ji's and di’s by di for

all 7. This generates an equivalent problem, but simplifies the mathematical derivations. So,

we assume all di=1 from this point on.

Let rE(pL,---,—L)', J=(Ji,-, Jm)” and e=(1,---,1)". Define k=1-eT.

2

1 m
k is the long run proportion of time available for setups, For infinite horizon problems
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k>0 is a necessary but not sufficient condition for the existence of a feasible schedule. Over
a finite horizon, however, we do not require x>0. Thus our procedures can be used when a
facility is overloaded, for instance, when two parallel facilities are used to produce a given
set of items, and the entire burden falls on one of them when the other suffers a break-

down,

We make three assumptions:

Ji<T =1, m
T>s>0 i=1,--m
pi>1 i=1,,m

If a product’s initial inventory is enough to satisfy demand over the horizon, i.e. Ji>T,
then we can avoid stockouts for the product without producing it. If si=0 for all 7/ and x>0,
both WSP and SAP are trivial. If si>T we can not avoid stockouts for item i, If pi<l, then
the facility cannot keep up with the demand of product z, much less with the demands of

other products, thus it is natural to assume p:i>1 for all i

2.1 Weighted Stockout Problem (WSP)

Here bold face represents a vector. The Weighted Stockout Problem (WSP) can be for-
mally stated as follows. There is a single facility on which m distinct products are to be
produced, We assume that demands which are not met are lost. The problem is that of
finding a production sequence f (the sequence may contain repetitions) and a vector of pro-
duction times t of dimension compatible with f, so that the weighted stockout times over the
planning horizon T are minimized.

We can easily show that there exists an optimal schedule that does not idle except possibly
after the last production run. Consequently, we do not need to include idle times in the for-

mulation.

2.1.1 Constraints

Let N be an upper bound on the number of positions in the sequence f. Later we will
show how to compute N,

Let yir be a binary decision variable to determine whether product 7 is produced in the km
position of the sequence,

yir € {0,1} k=1,---,N, i=1,--,m. (1)
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Let
w=>:y k=1, N. (22)

To insure that a production sequence is well defined and uniquely represented, we impose

wi=1, WS W, k=2,--,N. (26)
Let #ir be the production run time of product i in the ks position of the sequence, then

tir 20, k=1,--,N, i=1,-,m. (32)
For convenience, define

tio=0, i=1,-,m. (3b)
Since no production can take place without a setup, we impose

ti-Tyir <0, k=1,--,N. (3¢)
Also, the total time spent in setups and production runs must be at most equal to T,

g} S (syutta)<T. )
Let S* be the starting time of the ks production run affer the setup. Then

S = SE1+E (tua i), k=1,--,N (52)
where for convenience, we let |

So=0, SNHI=T (58)

Let x* be the stockout time period of the product 7 in the time interval [S¥!, St]: of
course

xt=0Q, k=1, ,N+1, 1=1,-m, (6)
Let J% be the inventory on hand of the product ¢ at time S*;by definition,
Jk=0, k=0,---,N+1, =1, m (7)

Clearly J=Ji for all 7 and J ' is the ending inventory of preduct i.

From the balance of inventory, stockouts, production and demand (See Figure 1), we have

JE gt U =T 4 bt (SHH1-Sk) k=0, N, §=1,-m (8)
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Figure 1. Relationship between inventory, stockout, production and demand

We now present some structural results for this N_{IP The following property states that
there exists an optimal schedule in which every production run for an item, except perhaps

the first, starts from zero inventory,

Property 1{ (Zero Switch Rule) There exists an optimal solution in which Ji=0 whenever
yu=1 and l;yaz 1.

Proof. Suppose that J#>0, yike=1, and that item i was produced last in position [<k. Let o
=min {Ji/(pi-1), ti}, reduce tz by 8 and increase tix by 8. (See Figure 2). This has no effect
on the production runs before [ or after k, while the intervening production runs are sched-
uled & units earlier with no increase in the stockout times. If 6=/%/{pi-1), then J#=0 in the
new schedule so the result holds. If é=ti, we eliminate the setup and the production run of
item i in position /, We can repeat the procedure until we either eliminate all previous setups
of item 7 or obtain a new schedule satisfying the property. M

inventory

1

time

ket — 6 —
fe— tir —3 fe—tik ———
e—tix + 6 ———

Figure 2. Production starts from zero inventory



#173% %53% Multiple Product Single Facility Stockout Avoidance Problem (SAP) and Weighted Stockout Problem (WSP) 145

Property 2. There exists an optimal solution with final inventories equal to zero, i.e.,
JH =, i=1,-,m. (9)

Proof. Suppose #* y* constitutes an optimal solution and that J¥*!' >0 for some 7, Let £>0
be such that y‘k-l and =0 for />k. Such a k2 must exist since J# <T. Replace Hx by ti

=muax (0, - 1 - R} ) The resulting schedule reduces the final inventory of ¢ retaining

optimality. ThlS process can be repeated until J¥*! =0 for all ;. H

Corollary 1. Equation (4) is vedundant.

Proof. Let 7 be the last item to be produced in the sequence. Since J§¥ >0,
J¥ 45N 25N=gll§~1 (syutta)-tin.

Since x =(J¥+S¥)-(J {4+ S )-pitin 20,
Jro -S> (J4S")+pitiv=>S¥+pitiv
:égl(siyik_"_tik) + (Pz’ 1) tiv ggl(siym“'tik)

By Property 1 and S¥*'=T, the above inequality reduces to equation (4).

2.1.2 Objective Function

For the WSP, the objective is to minimize the weighted stockout times during the planning
horizon [0,T]. So, giben N, the WSP becomes:

(MIP 1)
minimize ip,‘[,x"

=1 k=1

subject to (1)-(3), (5)-(9).

We now obtain an upper bound on N, Denote [[x]] as the largest integer smaller than or

equal to x.

Proposition 1. Assume without loss of generality that s1<s2<---<sm. An upper bound on the
total number of positions in the sequence for WSP is N=max (N1, N:2) where

(T+s2)
2[[ ‘+ ]]andNo 2[[ (s,

Proof. We consider how many setups can fit into T. let a1 and o2 be the maximum number

11-1

of repetitions of S$1 and S2. Since products cannot be produced consecutively, the worst case
production pattern is the repetition of the two products with smallest setup times.
There are two possible cases,
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(a) {51, h, Sz, Iz, S1, f3,S2, tv} which ends after setup for product 2. Let on be the maxi-
mum number of repetitions of S1and Sz which follows above pattern, Then, ou(s1+82)<T and

o1is an integer, consequently ou= [[( sl-’fl-‘éz)]]' In this case, the total number of posit-
ions in the sequence is N1=2da1,

(b) {81, &, S2, L2, S1, I3,--,81, t~} which ends after setup for product 1. Let oz be the maxi-
mum number of repetitions of S1and Sz which follows above pattern, Then, oeSi+(az-1)S:<T
and a2is an integer, consequently, oz= [[%}i—:—;—]]. In this case, the total number of posi-
tions in the sequence we need becomes N.=2u2-1.

From (a),(b), we can get an upper bound on the total number of positions in the sequence

we need. i.e. N=max(Ni, Nz2). R

2.2 WSP-permutation

We restrict to the schedules which allow at most one setup for each product. The problem
remains NP-hard (Arkin et. al[2]). The MIP formulation is similar with the additional

constraints
k;y.-h31 =1, ,m. (12)

An upper bound on the total number of positions in the MIP under (12) is clearly m.

2.3 SAP

A slight modification of the MIP formulation MIP1 for the WSP can be used to solve the
SAP problem. The idea is as follows. Use equal stockout penalties, say pi=1 for all 7. Solve
the LP-relaxation of MIP1, If the objective value of the LP-relaxation is >0, stop, there is
no feasible schedule, since the optimal value of the LP relaxation is a lower bound on the
optimal value of MIP1. Else, solve MIP1. If the optimal objective value is 0, then we have
a schedule that avoids stockout up to time 7.

Proposition 2. Assume without loss of generality that S1<S:<--, <Sm. An upper bound on
the total number of positions in the sequence for SAP is N=max (N1,Nz) where

kT+r'J—(s;+--+5s.)}
(sx+sz) ]]+m ~2

kTHr'J—(ss+--+5s,)+5.4
(s, +s,)

N=2[[

N=2({

H4+m -3,
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Proof. From Property 2, we only need to seek a feasible schedule such that J¥*1 =0 for all
7. Also, the production time required to avoid stockouts is independent of the number of
setups needed to avoid stockouts. Indeed, ti=(T-Ji) /pi is the production time required to

avoid stockouts for item 7. Consequently, the maximum time available for setups is

T Zt >: T=J: _p(i- 21)+2‘]- =T+

=P =1 =1 D

We consider how many setups can fit into 7. Let o1 and o2 be the maximum number of
repetitions of $1 and Sz which follows a certain pattern. Each product must set up at least
once. The largest possible number of setups is given by a pattern in which the two products
with the smallest setups are alternatively produced, and, all others are produced only once,

There are two possible cases,

(a) {S1, Sz, S1, S2,---,81, Sz, S3, S4,---,Smp. The order of the setups for the products 3,.-,m is
arbitrary. Let ou be the maximum number of repetitions of $1in the pattern above, Then, a1

+
(51+82)+ 83+ +Sm<xT-+r'J and a1 is an integer. Consequently, on={[ WT+r J(s (-fs_:-;- Sn) ]]_
1 2.

This pattern requires at most Ni1=2a1+m—2 positions in the sequence.
(b) {8y, S2, S1,-+-,82, S1, S3, S4,---,Smy. The order of the setups for the products 3,-,m is arbi-
trary. Let oz be the maximum number of repetitions of Siin the pattem above. Then, a1+

+5m
(0z-1) S2+S3++-+Sm<xkT+r’J and ozis an integer. Consequently, o2={ [ Wtrd ((:_3:;) Su)+ 3
1 2.

3
This pattern requires at most Nz=2o02+m—3 positions in the sequence.

Form (a) and (b), an upper bound on the total number of positions in the MIP formulation
is N=max(N1, Nz). H

Remark. We can add the following cut for the SAP since the maximum time available for
setups is explicitly calculated. The cut can be used to eliminate all sets of frequencies for

which there is not enough time to avoid stockouts,
> (L) <xT+rd

Example 1. We use Anderson’s [1] example with 7=40, The data are shown in the Table 3
Form Proposition 2, an upper bound of the total number of positions in the sequence is 8
Solving MIP1, we get an objective value of 0. The schedule is given by f=(1, 2, 3, 2) anc
£t=(4.333, 4.633, 1.300, 9.866). So, we have a schedule that avoids stockouts up to T=40. Fo
T=70, a feasible schedule is f=(1, 2, 3, 1, 2, 3, 1, 2) and t=(2.451, 11.722, 2.536, 4.736, 12
911. 1.764. 2.147. 4.867).
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Table 3. Data for Anderson’s Example

product demand production setup initial
number rate rate time inventory
1 1.0 6.0 3.0 14.0
2 1.0 2.0 1.0 11.0
3 1.0 10.0 5.0 27.0

3. Special Cases of the SAP and the WSP

3.1 Given a production sequence, both problems can be solved by LP

Given a production sequence, the problem is that of finding production run times, We for-
mulate this as a Linear Program by assigning specific values to the zero-one variables in the
MIP1. The LP can be used to test if a particular sequence is feasible or if its associated
cost is within a reasonable bound.

Suppose f=(f1, f2,---,fN) is a given sequence. We can use the sequence information di-
rectly in the MIP1 to obtain an LP. f{+ is the production time in position 2 We obtain the
following LP formulation.

WSP for a given sequence

(LP)
C,=minimize gp.zé:xf
subject to
S=0, S¥*1=T
St=8¢1+ L1+ Sre =1,",N
T —xbtl =Tk + pate— (S4H1—Sk) k=0,-,N, for all i=f
JEH okt =]k — (S**H1-SF) k=0,--,N, for all i# fx
fHh=0 ‘
J?=Ji =1, m
tx=0 k=1, N
xE=0 =1, N+1, i=1,,m

JE>0 k=1, ,N+1, i=1,-,m
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The SAP with a given production sequence
1f Cr=0, then the solution te the LP is a feasible schedule. Else, there exists no feasible

schedule based on the sequence,

3.2 Solving the SAP when production sequences are restricted to
permutations

From Property 2 in the precedings section, we only need to seek a feasible schedule such
that the inventory at time T is 0. Consequently, a necessary condition for the existence of a

T-J)

feasible schedule is to produce each product fi= ——~ time units. Also, the sum of pro-
duction and setup times must be at most T. Thué, a necessary condition for feasibility is
T=>(esr'J)/ «x. If this condition is satisfied, we show that the resulting problem is
equivalent to the m/1/Tmax scheduling problem. This idea was used by Anderson [1] to de-
velop a heuristic for SAP infinite. A similar transformation was used by Arkin et., al [2] to

prove the NP-hardness of the WSP, by reduction to the Weighted Tardiness Problem,

Propesition 3. Given Ji, Si, i, i, i=1,--,m, there exists a feasible permutation schedule that
avoids stockouts if and only if the minimum value of the m/1/Tmax problem is 0, where the
due dates are Ji+ti, and the job lengths ave Si+ti, i=1,--,m,

Proof. Assume, without loss of generality, that a feasible sequence is {1, 2,--,#4 and let S:
be the start time of run 7. Then from the feasibility of this cyclic schedule, we have Si<J:
for all 7. Arrange the jobs according to the sequence {1,--,74. Obbiously Si+fi<Ji+t: for all
i, implying that the jobs are completed before their due dates. Now assume, without loss of
generality, that the sequence {1,---,#} has no tardy jobs. Let F: be the finishing time of job
1. Then, from the fact that tradiness is 0, we have Fi<Ji+ti for all i, Obviously Fi—fi</i
for all 7 which means that the initial inventories do not run out before the start of their pro-

duction runs,

To check the existence of a feasible cyclic schedule we solve an m/l /Tmax problem with
the appropriate transformation. This is done by sorting the products according to the Earliest
Due Date (EDD) rule (See Baker [3]). It takes linear time to transform the data. Also,
sorting using the EDD rule takes O(mlogm), and checking the minimum value of maximum
tardiness takes linear time, Consequently, the overall complexity is O(mlogm).

The overall algorithm is:



150 Ilkyeong Moon wREENEEE

Algorithm SAP-Permutation
Step 1. If T>(e’s-r'J) /k, go to Step 2. Else stop, there is no feasible schedule.

Step 2. Transform into m /1 /Tmax scheduling problem via,
di=]Jit+ti, li=si+ti, for all ¢ where di and /i are
the due date and the processing time, respectively, for job .
Solve m /1 /Tmax problem with di’s and &’ by the EDD rule.
If optimum objective value of m /1/Tmax=0, there exists a feasible schedule.

Else, there is no feasible permutation schedule.

In practice, one should first run this algorithm. If it stops at Step I, there is no feasible
schedule. At this point, one may select stockout penalties and use a heuristic for the WSP,
If in Step 2 the maximum tardiness is positive, then only a non-permutation sequence may
be feasible,

Example 2. The data is as in Example 1 with T=40. We restrict to permutation sequences.
Step 1 is satisfied since (e’s-r'J) /xk<T. The transformation to m/1/Tmax yields d=(18.3,
255, 28.3) and 1=(7.3, 15.5, 6.3). Using the EDD rule, the optimum value is 0.863, so at

least one job is tardy. Consequently, there exists no feasible permutation schedule. B

4. Heuristics for the WSP

Since the SAP is NP-Complete, the MIP cannot be used when the number of products is
large. We present two heuristics for the WSP that generate permutation schedules and then
extend the ideas to a general heuristic for the WSP. Note that the LP formulation in Sec-

tion 3 could also be used to obtain optimal production runs for the resulting sequence.

4.1 Heuristics for the WSP under permutation schedules

Since each product is setup at most once, the key role of the heuristic is the choice of
the production sequence., We give two heuristics which are similar except in the choice of
the product to be produced next. After we obtain a sequence, we perform adjacent pairwise

interchanges to sequeeze out better schedules.
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Heuristic 1 (Savings Heuristic)

This heuristic chooses the next product by selecting the one with largest value of (savings
for the product-toal loss for other products) /(invested time). By saving we mean the
weighted stockout if the product is not setup immediately. The total loss for the other
products is the sum of their weighted stockouts. The invested time is the setup plus the
production time for the selected product. The complexity of this heuristic is O(m?) before

the adjacent pairwise interchanges and O(m*) after the adjacent pairwise interchanges.

Step 0. (Initialization.)
Ji=]i, T'=T, i=l,--m  C={l,~m

Step 1. (Compute the production time for each product.)
ti={T -max{Ji s)}Y/pi  i=1,-,m
If <0, C—C\i},

Step 2. (Choose the product to be produced.)
=argmaxiecl(pipiti—Y jec. j»i pimax0, sitti+si—J;1) /(si+ti)}

Produce product 7* for £

Step 3. (Update the inventories, the time horizon and the set of unscheduled products.)
Ji—Max(Ji—se—tr, Q)  j#i
Jt—Max(J+—S8r, 0)+(pr—1Dt
T T '~ (Si+ti)
C—C\i#*}

Step 4. (Stopping criteria.)
If T'<0 or C=¢, then go to Step 5. Else go to Step 1.

Step 5. (Adjacent pairwise interchanges.)

Perform adjacent pairwise interchanges and find a better solution.
Heuristic 2 (Greedy Heuristic)

This heuristic is the same as Heuristic 1 except for Step 2 This heuristic chooses the
product which has the largest value of (savings/invested time). The meanings of savings and
invested time are as those in Heuristic 1.

For the WSP, the objective is to minimize the weighted stockout times during the palnning
horizon [0,7']. That is,
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m N
minimize ¥ p; 3. x5
i=] K=0

=1

=L o LL (U +8) = 2 +5)1 = £ pta]
=L 0 (T=J)~L ot 1 ta.

The last equality follows from Property 2 and the telescoping sum. Consequently, the prob
lem is equivalent to maximize Y% pipi YH_\ tir. This heuristic can be called greedy, since we
want to maximize Lip:piti in the MIP formulation, and here we disregard the effects of the
constraints, The complexity of this heuristic is O(m) before the adjacent pairwise

interchanges and O(m?®) after the adjacent pairwise interchanges.

Step 2. (Choose the product to be produced.)
*=argmaxicclpipiti / (si+ti)}. Produce product #* for fo,

We used the above two heuristics on 16 sets of problems (5 problems in each set). As in
a factorial design, differenent distributions of $i, pi, Ji, and pi were used. The number of
products in the test problems was 4. The length of the planning horizon was generated from
uniform distribution on [10, 30]). The data sets were generated randomly from uniform
distributions on the given intervals, Table 4 shows distributions for the data sets. The differ-
ent factor distributions were mixed in all possible combinations to yield 16 problem types. An
example of one problem type is:4 products, each with dense setup time distribution, pro-
duction rate distribution and initial inventory distribution, and with scattered stockout penalty
distribution,

Table 5 shows the results for these runs. Several tables would be required to display the
16 different distributions that were used in the study. For the sake of brevity the detailed
results are omitted here. The ratio in the table is (total weighted stockout costs using heu-
ristic /minimum weighted stockout costs using MIP). In order to see the performances of the
heuristics without adjacent pairwise interchanges (a.p.i.), we also show the results before we
apply the ap.i. The last row in the table tells the number of problems (among 80 test
problems) in which the heuristic solution is optimal.

The results are fairly good even before we apply the a.p.i. Even though the a.p.i. do not
improve performances significantly in the 4 product case, its impact is expected to be greater
when the number of products is large. Moreover, the LP can be run on the resulting se-

quence to obtain the minimum weighted stockout.
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Table 4. Distributions for Data for Test Problems

Problem Data Dense Scattered
Setup time (1, 2] (o, 3]
Production rate [4, 5] (3, 6]
Initial inventory {1, 31 (0, 4]
Stockout penalty (10, 20] (10, 50]

Table 5. Computational Results for Test Problems

Heuristic 1 Heuristic 2
before a.p.i. after a.p.i. before a.p.i. after a.p.i.
Mean ratio 1.006 1.001 1.008 1.001
Maximum ratio 1.059 1.057 ' 1.085 1.031
Number of problems 53 72 48 75
with ratio=1
among 80 problems

4.2 Heuristics for the WSP

The problem is more involved than WSP-permutation because of the need to compute pro-
duction frequencies. We vary the frequencies within a range and compute the cost of a
schedule based on each set of frequencies. We then use the LP formulation developed in sec-

tion 3 on the production sequence of the least cost schedule to obtain optimal run times for
that sequence,

Heuristic 3

This heuristic is a generalization of Heristic 1 for the WSP. The complexity from Step I to
Step 5 is O(m?). An upper bound on the repetition of / is §=[T(1-x)-r'J]} /e’s. Consequently,
the total complexity is determined by maximum of O(é#?) and the complexity of LP,

Step 0. (Initialization,)
Ji=Jy, T'=T, i=l-m  C={l,-m
ti=(T-max(Ji, i) /b

Do I=[[(kT+r'J) /e's]]+1 to ([T /e’s]]
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Step 1. (Compute the production time for each product.)
t=Min{[T -max(Ji, $)1/pi, i/} i=1,m

Step 2. (Choose the product to be produced.)
t*=argmaxied{(pipiti—Yjec, j»i pimax[0, Si+ti+si—J;1) /(si+ti)}

Produce product #* for #'s,

Step 3. (Compress.)

Combine consecutive setups if they exist.

Step 4. (Update the inventories, compute the cumulave stockout cost, the time horizon and
the set of unscheduled products.)

Ji—Max(Ji—se—t=, 0)  j#i

Ji—Max(J+—se, 0)+(pe—1)t7

Compute cumulative stockout cost.

T'~T '~ (Se+t7)

If max{Ji $)=>T’', then C—C\{7}

Step 5. (Stopping criteria.)
If T">0 and C#4, then go to Step 1
end

Step 6. (Optimization for the given sequence,)
Choose the sequence with smallest cost. Solve LP using the sequence to squeeze out

a best solution for the sequence.

We used the above heuristic on 2 sets of problems (10 problems in each set). The number
of products in the test problems was 3. The length of the planning horizon and the stockout
penalty were generated from uniform distributions on [10, 30] and [10. 20], respectively. The
reason that we do not use a spread distribution for stockout penalty such as [10, 50] is to
avoid trivial situations which result in permutation schedules. The data sets were generated
randomly from uniform distributions on the given intervals. Table 6 shows the distributions
for the data sets,

Table 7 shows the results for these runs, The ratio in the table is (total weighted stockout
costs using heuristic /minimum weighted stockout costs using MIP). The mean and minimum
ratios are similar for both the dense and the scattered cases. The maximum ratio is larger

for the dense case suggesting that those problems are harder.
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Table 6. Distributions for Data for Test Problems

Problem Data Dense Scattered
Setup time [2, 4] {1, 5]
Production rate (4, 5] (3, 6]
Initial inventory [1, 3] (o, 4]

Table 7. Computational Results for Test Problems

Dense Scattered
Mean ratio 1.117 1.105
Minimum ratio 1.001 1.025
Maximum ratio 1.284 1.175

5. Phasing into a Cyclic Schedule

5.1 WSP when the target inventories are given

Suppose that we want to phase into a target cyclic schedule by time 7. The cyclic sched-
ule can be either an optimal Rotaion (Common Cycle) schedule or a heuristic schedule
obtained by a time-varying lot size heuristic. In either case, we can compute the target in-
ventories for the cyclic schedule. Let the target inventories be Ii for product ¢. Then we can
find an optimal solution for the WSP problem by modifying the MIP1 slightly. Since the tar-
get inventories {ending inventories for the WSP) are specified, we can modify equation (10)
to read

]{Vﬂ =J; =1, m

5.2 Phasing into a rotation schedule with minimum aggregate inven-
tory

Suppose we would like to follow a Rotation schedule (over the infinite horizon) after a
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finite horizon 7. Then we can easily find an optimal (in the sense of minizing average setup
and holding cost) Common Cycle. There are m! different permutation schedules with this
Common Cycle length. Among them we want one whose initial inventories i has minimum
aggregate inventory Y 7,7#:ili. This schedule reduces the burden of solving the WSP with
these target inventories. The following propostion shows that SPR (Slowest Processing Rate)

rule minimizes the aggregate inventory.
Proposition 4. (SPR Rule) Aggregate inventory is minimized by the SPR sequence:

St PSS 1< S pmPim-
Proof. We use a pairwise interchange argument. Consider a sequence S that is not the SPR
sequence, That is, somewhere in S there exists a pair of adjacent products, { and j, with j
following Z, such that St1pLi1>SU1PG1. Now construct a new sequence, S°, in which jobs ¢ and
j are interchanged in sequence and all other jobs are same as in §. We temporarily adopt

the notations A(S) and A(S’) to represent the aggegate inventory under schedule S and S,
respectively, We then show that A(S”) is smaller than A(S).

AS)=Y L, =T rnL+ X nlL+r7(Is+TLr)+7(X s+ T r),
k=1 k<i k>; k<i k<i k<j k<
ASY=F nli=Lrl+Lrli+r{L s+ TE )+ r(T s+ TL 7).

Therefore,

A(S)— A(S)=risi+Trvi—#isi—Tvi¥i=v;$i—¥iSi>0.

In other words, the interchange of products 7 and j reduces the value of A. Therefore any
sequence that is not the SPR sequence can be improved with respect to A by such an inter-
change of an adjacent pair of products. It follows that the SPR sequence itself must be opti-
mal. H

After we sequence the items, the target inventories [i's are easily computed. Then we can
apply a modified Mixed Interger Program to solve the WSP for the finite horizon and we

can follow a rotation schedule thereafter. We summarize the procedure as follows:
Algorithm Phase

Step 1. Sort the items by the SPR rule.

Step 2. Find an optimal Rotation schedule based on the sequence of Step 1.

Step 3. Compute the initial inventories of the Rotation schedule in Setp 2.

Step 4. Solve the WSP using the modified Mixed Integer Program,
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Example 3. We want to find a schedule which minimizes stockout penalties (if any) during
30 days. After that we will follow a rotation schedule, The data are as follows:m=3, p=(8,
2, 10), 8=(3, 1, 5), J=(8, 20, 17), p=(1, 1, 1), a(= setup cost)=(20, 10, 100), h(= holding
cost)=(0.1, 0.2, 0.3). Using the SPR rule, we obtain a rotation schedule with sequence (2, 1,
3). The target inventories are easily computed using the common cycle length and rotation
schedule:I=(23.285, 1, 29.713). Solving the modified MIP, we obtain a schedule that avoids
stockout during 30 days and recovers to the target inventory levels, The sequence and pro-
duction times are:f=(1, 3, 2, 1), t=(2.7543, 4.2713, 55000, 4.7932). ®

6. Conclusions

This paper presented a MIP formulation for the WSP and applied the formulation to the
SAP. The MIP formulation can be directly applied to solve the SAP or the WSP with mod-
erate problem sizes. However, if the problem size is big, computational cost for using the
MIP approach will be very high. Several heuristics are developed and effectiveness are
tested. We showed that some special cases of the WSP and the SAP can be solved in poly-
nomial time. We also demonstrated how the WSP can be coupled with a cyclic schedule after
a finite horizon. These models can be used as a practical scheduling tool for temporarily
overloaded facilities until a normal load condition is recovered or to phase into a target cyclic
schedule after a disruption.

In some flexible manufacturing systems, group technology principles divide items naturally
into families (groups) so that substantial setups occur only when switching production be-
tween families. That is, if production is switched from one item to another in the same fam-
ily, only a minor intra-family setup is required. If, however, production is switched to an
item outside the family, then a major inter-family setup is required, Extensions to the mul-

tiple family case might be an interesting research problem.
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