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Monte-Carlo simulation of earthquake sequence in the time and magnitude space
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Abstract/® &

A computer simulation of earthquake sequence in the time and magnitude space was
done using random number generation. The theory of the simulation are based on the
two statistical models of earthquake events. Those models are Stationary Poisson Process
for independent earthquakes and Branching Markov Process for aftershocks. The

generated earthquake sequnces resemble the actual earthquake catalogs.

W A HPE o] B8l A7k} pe] dodoa dAel A7 WAl g s} 43X AAS
g B/t 7P A AL o] FL A W] AHD F FFY FAA 2dd 7% ). OI%
RAES 7] SRA 2 WS A dde v EOH— A 2]e} ojAo) BAY B7) vl2az
Azl Foltt, Ad d#9 A2 HAEL 44 TP A9 B3 $AHE Ha Fo)

INTRODUCTION information such as travel time,

magnitude, hypocenter of the seismic

In a given seismic region, for example, the energy can be gathered from the

region confined in one or two degrees of earthquake event. If we make a

distances, after some strain energy is ~ magnitude-time plot of earthquake

absorbed, there will be radiation of sequence In a given region, two kinds of

seismic energy, i.e., earthquake. The patterns are found.
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Fig. 1

Two kinds of patterns of earthquake sequence in time-magnitudespace.

"Class 1 and 2 represent independent and dependent events, respectively.

The typical classes are shown in Fig. 1.

If we calculate the interevental time for
class 1, the distribution of it follows
exponential one (Utsu, 1972). It seems that
there is no magnitude relation among each
called
independent shock. Due to the earthquake

event. Therefore they are
exponential distribution of interevental
time, this process of earthquakes belongs
to Poisson Process (Parzen, 1962 ; Vere-
Jones, 1970).

With careful inspection of class 2, we can
find some magnitude or energy relations
These shocks

dependent earthqukes, i.e., aftershocks.

among events. are
Some energy level transitions are involved
in the process . The transition probability
may depend on the current energy state of
the system (Vere-Jones, 1966). Therefore
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we could guess a Markov Process (Shilien
and Toksoz, 1970}

Now assuming that the processes of
series of earthquakes be Poisson and
Markov Processes, we can simulate real
earthquake sequence in the time and
maginitude space by random number

generation.

THEORY

The occurrences of the independent
earthquakes are governed by Poisson
Process. This indicates that the probability
of N events occurring in the time interval
Atis given by

(A4t) exp(Adt)
n!

Pn (4t) =
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Poisson distribution of independent earthquakes.

F. (4't) is the probability of N events occurring in the 4t

Mean and variance are the same and
equalto Adt A istime rate of events (Fig.
2). Exponential distribution of interevental
time can be derived from Poisson Process
(Parzen, 1962),

f(t) = A exp(-At)

Aftershock process is more complex
than independent shock process. Let us
assume that just before a mainshock, there
was accumulated strain energy &o in a
seismic region. When the main shock
occurs, there will be some energy drop of

€—€1. From now on we get shower of
small eérthquakes here and there. The
system enters into Markov Process
session. In each shock, some energy drop

is accompanied(Fig. 3).
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In each discrete energy drop, the
assumption that there is some transition
probabilty function T'(X/e) is provided.
T(X/e) indicates the probability of
transition occurring from an energy state
€ to another energy state X. Let the
probability of transition occurring at state
€ into any other state be A(¢). This is the
rate of events. P(e t) is the probability of
being in state € at a time state £. If we
assume that future evolution depends
only on it's present state and does not
depend on how it had reached the state,
we get the following integro-differential
equation.

Kepte.t) + Y

= f P(X.t) AX) T(X/e) dX




Baag, Chang Eob and Shin, Jin Soo

Now if we know A(e) and T(X/e),
everything about the system can be
derived. In order to find A(e) and T(X/¢),
some known seismological relations can
be used.

First, for the determination of transition
probability T(X /e ), seismologists Shlien
and Toksoz (1975) used Gutenberg-
Richter's frequency-magnitude relation

and magnitude-energy relation.

log N(M) = a - bM
logE=11.84 1.5M

Combining these relations, the number

of shocks having energy E or greater

where

B=b/15
logA=a+11.8b/15

By differentiation, we get the probability

density function of energy released.

d B-{
P(E) = —=NE) = CE

In order to get boundness of the
probability at zero E value, the function
should be truncated at small E. This
procedure results in ignoring earthquakes

below a certain magnitude. By

become normalization of P(FE), the constant
becomes
N(E) = AE?
&0
major portion of
accumulated strain energy
: main shock
Pumping Er
of -
remaining part of
energy strain energy
1 aftershock
St T
Poisson Markov
procesa process
A(g) : probablility of
£ —_ '-'—[ transition occurring
\ r(xie) P(e.t) : probability of being
X in state at time t
Fig. 3  Strain energy transition scheme following the Poisson and Markov process.

T(X/e ) indicates the probability of transition occurring from an energy state at € to
another state at X.
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C=BE}

The mean energy is

B E
B-1~

E= [ EP(E)dE =

But this mean energy is unreasonable
for the value B < 1 (b. < 1.5).
Therefore we need limitation of maximum
magnitude, and the function should be
truncated at some upper limit, e.g., no
than 9. By

normalization of P(E), constant (

greater magnitude

becomes

__ B
EY - B

C

Now we get mean energy £ by
integration of °(£) from Fo to E max.

B E-B+1 - E BB-H
B-1

E= E: -Ey -

If we assume that frequency-magnitude
relation is invariant with the state energy,
i.e., assuming constant p value during
aftershocks (Lomnitz, 1966 : Hamilton,
1966), the energy drop distribution
function P(E) become transition
probability T'(X /e) since E indicates

e - X.

dropped energy, E

T(X|e) = P(E) = CE™
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= [C (€ = X)*" Emx)e = X)Fo
0,€—X(E, €~ X)Enx
Next, for determination of the time rate
of event A(E), Shlien and Toksoz used
Omori's law that during an aftershocks
sequence the rate of earthquake decays

with time ¢.
r
dn(t) = — 4t
)=

where 4n(t) is expected number of
aftershocks in time interval 4t and r,p are

given constants. The energy state becomes

i ) dl’l
€ =F [ —dt
|
_rEtt"
r—1
¢ = [e(p-l) 7 -1/}

rE

where E is mean energy, and previous
result can be used for it. The time ¢ can be
expressed in terms of energy state ¢ and

mean energy K. The time rate is [f

_dn

A ==
dt

rt*

. -1
— I,—I/(I 1) [l-)E__ ] p/ip-1) ep/(p—))

Now, since we know A(e) and T(X/e)
for aftershock, we know everything about

the system, and computer simulation is
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possible for Markov Process.

COMPUTER SIMULATION AND
DISCUSSION

Now we are ready to simulate
earthquake sequences in a region with
given values of time rate A and transition
probability T, where T is related with
mean energy E. ‘

First, for the Poisson Processes we have
to generate two series of random
numbers. By inserting one of the random
number series into the invérse of
exponential function, we get interevental
time of each event. This means Poisson
Process. Another set of random numbers
is plugged into the frequency-magnitude
relation to get magnitude of each event
(Fig. 4).

Next, for the aftershock simulation we
need to calculate total energy of all
aftershocks from the fraction of main
shock energy.

Energy for aftershock : € = Ef
Here, f is a fraction.

Using the calculated total energy, the

time rate of events becomes

-1
_ vipn P o) g i)
r P [ ] plpl) g P

E

A

By generating a random number
inserting it into the inverse exponential

time function, we get interevental time of

.one aftershock. This means branching
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Poisson Process. Generation of another
random number produces magnitude and
energy drop by use of the following

equations,

In TJM
a
logE = 11.8 + 1.5M

M=Mmin_

Independent event process simulation

Random number ‘

Interevental time I t

Exponentia]l distance ———————|

r Ujey = e M ]
In
Magnitude M= M. _.Tvﬂ
Gutepberg — Richter's —— 1
freq~mag. relation I InU; =a-~- bl I

!

{ log £ = 11.8 + 1.5M |

Energy

Fig.4 Procedure to generate independent

events of the Poisson Process.

Aftershock process airmulation

X w1/t =t B/ B=1) P/(P—’j
| E

{

‘ t=——}‘— n i }
M= Mo
[
]

]
1 _ 1n Disr
!
E = 7118 + 1.5M ]
| . *I -5 |
Fig.5 Procedure to generate aftershocks of
the Markov Process.
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The calculation of new energy state is
done for next aftershock. The repeatition
of the same calculation produces
interevental time and magnitude of new
aftershock( Fig. 5).

Fig. 6 and 7 show the results of
both
independent and aftershocks. In Monte-

computer simulation for

o: INDP. EARTHQUAKE
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A result of computer simulation for

Fig.6

both of independent and aftershocks.

Parameter used in the computation
are .p=4/3, r=2b=11 .
b =029 M = 80 Mmnin= 40
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Fig.7 A result of computer simulation for
both of independent and aftershocks.
All parameters except A are equal
to those of Fig. 6.

A for this plotis 0.01.
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Carlo simulation of these processes the
following parameters are used : Omori's
2.
of energy going into aftershocks f = 0.4

parameter p = 4/3, r : fraction
b value for the frequency-magnitude
1.1,
0.9:
maximum and minimnum magnitude Mmax
= 0.8, Mrin = 4.0
0.05 for the first plot (Fig. 6), and A
= (.01 for the next plot (Fig. 7).

relationship for aftershocks b
for independent events b, =

; Poisson rate A

The magnitudes of events are shown as
a function of time. The aftershock
sequences after large independent
earthquakes are quite clear. The sequences
resemble the actual earthquake catalogs,
but better plots can be produced by
changing parameter and initial number of

random numbers.
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