Transactions of the Korean Society of Mechanical Engineers (대한기계학회논문집)
- Volume 16 Issue 7
- /
- Pages.1322-1331
- /
- 1992
- /
- 1225-5963(pISSN)
DOI QR Code
A Study on the Symmetric Neural Networks and Their Applications
대칭 신경회로망과 그 응용에 관한 연구
- Published : 1992.07.01
Abstract
The conventional neural networks are built without considering the underlying structure of the problems. Hence, they usually contain redundant weights and require excessive training time. A novel neural network structure is proposed for symmetric problems, which alleviate some of the aforementioned drawback of the conventional neural networks. This concept is expanded to that of the constrained neural network which may be applied to general structured problems. Because these neural networks can not be trained by the conventional training algorithm, which destroys the weight structure of the neural networks, a proper training algorithm is suggested. The illustrative examples are shown to demonstrate the applicability of the proposed idea.
본 연구에서는 Fig.3과 같은 다층 퍼셉트론을 사용하기로 한다. 그리고 위 에서 언급한 세가지점에서 다층퍼셉트론을 다시 살펴보아 해결하고자 하는 문제에 맞 도록 다층퍼셉트론을 개선시켜 보기로 한다. 따라서 본 연구의 목적은 제한조건을 갖는 문제를 풀기위한 새로운 형태의 다층퍼셉트론 설계 및 이에 적합한 학습규칙을 적용하여 보다 간단한 구조와 빠른 학습시간을 갖는 신경망을 구성하는데 있다.
Keywords