DOI QR코드

DOI QR Code

인공위성 레이다 영상자료를 이용한 임분구조의 물리적 특성파악

Analysis of Forest Stand Structure Using Spaceborne Synthetic Aperture Radar(SAR) Data


초록

최근 지구궤도상 영상레이다 시스템의발전과 더불어 여러 응용분야에서 레이다 원격탐사 자료를 이용하려는 관심이 높아지고 있다. 본 연구는 우주상공에서 얻은 레이다영상자료로부터 얻은 레이다반사치와 산림의 특성과의 상관관계를 밝히고자 하였다. 미국 플로리다 북부 산림지 대의 연구지역을 대상으로 하여 1984년 10월 우주왕복선 비행에서 Shuttle Imaging Radar B(SIR-B) 자료를 얻었다. 여러 종류의 참고자료(임분 조사자료, 임상도, 항공사진, Landsat Thematic Mapper 자료)를 이용하여 약 400여개 의 표본임분을 선정하였다. 각 임분의 물리적 특 성(평균수고, 흉고직경, 수간밀도, 생체량, 하층식생량)과 그에 따른 레이다반사치와를 비교하였고 그들간에 통계학적으로 유의성이 있는 상관관계를 볼 수 있었다. 또한, 동일한 임분특성에서도 레 이다반사치가 세 개의 주사각도별로 다르게 나타나고 있었다. 끝으로 최근 우리에게 이용가능한 인공위성 레이다영상자료의 종류와 특성 및 전망 등을 살펴보았다.

With recent development in spaceborne imaging radar system, there are growing interests using satellite synthetic aperture radar(SAR) data in various applications. This study attempted to identify the relationships between several forest stand characteristics and radar backscatter, measured from space altitude altitude at three incidence angles. Shuttle Imaging Radar-B(SIR-B) data were collected over a forested area in northern Florida in October, 1984. By using various sources of reference data (forest type maps, inventory records, aerial photographs, and Landsat Thematic Mapper data), about 400 forest stands of known characteristics were carefully located in the radar data. Relative radar backscatter for the three incidence angles of SIR-B data were compared with known forest stand parameters such as mean tree height, diameter at breast height(DBH), stand density, biomass, and relative amount of understory vegetation. The results show that these stand parameters have statistically significant correlations with the radar backscatter. In addition, the SIR-B radar backscatter from a certain stand parameter turned out differently at the three different incidence angles. Finally, the types and characteristics of currently available satellite SAR data are discussed.

키워드

참고문헌

  1. IEEE Transaction on Geoscience and Remote Sensing v.GE-24 no.4 Multiple incidence angle SIR-B experiment over Argentina : Mapping forest units Cimono,J.B.;A.Brandani,D.Casey;J.Rabassa;S.D.Wall
  2. Journal of Foresty v.81 no.1 Satellite technology : An improved means monitoring forest insect defoliation Dottavio,C.L.;D.L.Williams
  3. Journal of Forestry v.81 no.5 Classification of forest resources with Landsat data Fox III,L.;K.E.Mayer;A.R.Forbes
  4. Photogrammetric Engineering and Remote Sensing v.54 no.1 Assessment of Thematic Mapper imagery for forestry applications under Lake States conditions Hopkins,P.F.;A.L.Maclean;T.M.Lillesand
  5. Proc. of IGARSS'86, IEEE Calibrated X-and L-band scattering coefficients from a southern U.S. forest Kasischke,E.S.;R.W.Larson
  6. Proc. of' 89 Image Processing Conference Speckle noise filtering of satellite radar data Lee,K.S.;R.M.Hoffer
  7. 1990 ASPRS Annual Convention Tech. Pap. v.4 Shuttle Imaging Radar B(SIR-B) backscatter relationships with forest stand characteristics Lee,K.S.;R.M.Hoffer
  8. Computer Vision, Graphics, and Image Processing v.24 Digital image smoothing and the sigma filter Lee,J.S.
  9. Photogrammetric Engineering and Remote Sensing v.53 no.1 Extraction of areas infested by pine bark beetle using Landsat MSS data Mukai,Y.;T.Sugimura;H.Watanabe;K.Wakamori
  10. International Journal of Remote Sensing v.10 no.11 Relationship between Landsat MSS data and forest tree parameters Oza,M.P.;V.K.Srivastava;B.S.Pariswad;K.R.V.Setty
  11. IEEE Transaction on Geoscience and Remote Sensing v.GE-24 no.1 Analysis of forest structure using Thematic Mapper Simulator data Peterson,D.L.;W.E.Westman,N.J.Stephenson,V.G.Ambrosia;J.A.Brass;M.A.Spanner
  12. IEEE Transaction on Geoscience and Remote Sensing v.GE-22 no.6 Feature selection and the information content of Thematic Mapper Simulator data for forest structural assessment Spanner,M.A.;J.A.Brass;D.L.Peterson
  13. Photogrammetric Engineering and Remote Sensing v.54 no.8 A composite L-band HH radar backscattering model for coniferous forest stands Sun,Q.;D.S.Simonett
  14. International Journal of Remote Sensing v.11 no.7 Michigan microwave canopy scattering model Ulaby,F.T.;K.Sarabandi,K.McDonald,M.Whitt;M.C.Dodon
  15. IEEE Transaction on Geoscience and Remote Sensing v.GE-25 no.1 Multipolarization SAR data for surface feature delineation and forest vegetation characterization Wu,S.T.;S.T.Sadar