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A NOTE ON TOTALLY GEODESIC MAPS

IN JAE CHUNG AND SuNG Eun KoH

1. Introduction

Let f : M — N be a smooth map between Riemannian manifolds M
and N. If f maps geodesics of M to geodesics of N, f is called totally
geodesic. As is well known, totally geodesic maps are harmonic and
the image f(M) of a totally geodesic map f : M — N is an immersed
totally geodesic submanifold of N ( cf. § 6.3 of [W] ). We are interested
in the following question: When is a harmonic map f : M — N with
rank < 1 everywhere on M totally geodesic? In other words, when is
the image of a harmonic map f : M — N with rank < 1 everywhere
on A geodesics of N? In this note, we give some sufficient conditions
on curvatures of A. It is interesting that no curvature assumptions on
target manifolds are necessary in Theorems 1 and 2. Some properties of
totally geodesic maps are also given in Theorem 3. We think our The-
orem 3 is somewhat unusual in view of the following classical theorem
of Eells and Sampson (see p.124 of [ES]).

THEOREM ( EELLS AND SAMPSON ). Let M be compact with non-
negative Ricci curvature and the sectional curvature of N is nonpositive.
Then every harmonic map f : M — N is totally geodesic.

2. Results
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We use the following Weitzenbock formula for harmonic maps ( cf.
[EL]) f: M — N;
(1)
1 :
SONfI* = = IVdf)|* + Y (RN (df(ei), df (e))df (e:), df (e;)

— S RiM (), df )

where {¢;} is an orthonormal basis of the tangent space of M at the
point considered, Vdf is the second fundamental form of f. Note that
our Laplacian A is the negative of the usual Laplacian acting on func-
tions. Recall that f is totally geodesic if Vdf = 0 and f is harmonic if
(traceVdf)= 0.

THEOREM 1. Let M be compact with nonnegative Ricci curvature.
Then every harmonic map f : M — N with rank of f <1 everywhere
on M is totally geodesic.

Proof. Because of the rank condition, the second term of the right-
hand side of (1) is identically zero and by the curvature assumption,
the inequality

(2) D _(df(RicM(e)).df(en)) = —a® D |ldf(ed)|)” = —a*||df|>

13

holds for every real number a. Then we have
1 9
(3) SONN* < ~[IVdf|1? + a®|ldf|)*.

By the Divergence Theorem, we have

(4) o< [ IvarFa <a® [ jariam.

Now, taking a — 0 we get |Vdf]|* = 0, that is, f is totally geodesic.
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COROLLARY 1.1. Let M be compact with the Ricci curvature bound-
ed below by a? > 0. Then every harmonic map with rank of f < 1
everywhere on M is constant.

Proof. Proceeding as in the proof of Theorem 1, in this case we get

(5) 0< /M IVdf| dM < —a? /M df|I? .

Since a # 0, it must be that ||df|| = 0, that is, f is constant.

For noncompact complete Riemannian manifolds, we have the fol-
lowing

THEOREM 2. Let M be complete noncompact with nonnegative
Ricci curvature. Then any harmonic map f : M — N with rank of
f £ 1 everywhere on M is constant if its energy integral is finite.

Proof. Set e(f) = ||df||*. Then by (1), our assumptions on the cur-
vature and the rank of f imply

(6) De(f) < =2 Vdf|I”
Now, the proof of Theorem 2, section 6.4 of [W] completes our proof.

Without the rank condition, we have the following result for totally
geodesic maps;

THEOREM 3. Let M be a compact Riemannian manifold with the
Ricci curvature bounded above by —a* < 0 and let N be a Riemann-
ian manifold with nonnegative sectional curvature. Then every totally
geodesic map f : M — N is constant.

Proof. Since f is totally geodesic, our curvature assumptions and (1)
imply

SAldIP > |

By the Divergence Theorem, we have

0z a [ i an.
M
Since a # 0, ||df||* =0, i.e., f is constant.

235



In Jae Chung and Sung Eun Koh

References

[EL] J. Eells and L. Lemaire Selected Topics in Harmonic Maps, CBMS 50, Amer.
Math. Soc., 1983.

[ES] J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds,
Amer. J. Math. 86(1964), 109-160.

(W] H. Wu, The Bochner Technigue in Differential Geomeiry, U. C. Berkeley Lec-
ture Note, 1986.

DEPARTMENT OF MATHEMATICS, KONKUK UNIVERSITY, SEOUL, 133-701, KOREA

236



