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A CORRESPONDENCE BETWEEN
HECKE RINGS £I(q) AND D"

JAE-MYUNG CHUNG AND MYUNG-HwaAN KIM

0. Introduction and Notations

Hecke operators of degree n are closely related to polynomials in
ClzE', 2", - ¢F']. Many mathematicians like Satake [Sa), Shimura
[Sh], Andrianov [A1l], to name a few, did a great deal of work on this
relation. One way of studying this relation is via the Hecke ring Dy
associated to the Hecke pair (A", V"), where A" = SL,(Z) and V" =
{De M,(Zp~'])| det D = p®, 6§ € Z}.

The purpose of this article is to give a certain correspondence be-
tween Hecke operators and elements in Dy, which is very interesting and
useful in connection with the Hecke operators acting on Siegel modular
forms.

Let Z,Q, R, and C be the ring of rational integers, the field of ra-
tional numbers, the field of real numbers, and the field of complex
numbers, respectively. Let F, be the field of p elements, where p is a
prime.

Let My, ».(A) be the set of all m x n matrices over A, a commutative
ring with 1, and let M,(A4) = My, a(A). Let GL,(A) and SL,(A) be
the group of invertible matrices in M,(A) and its subgroup consisting
of matrices of determinant 1, respectively.

For ¢ € M, (A), h € M, o(A), let g[h] = ‘hgh, where 'h is the
transpose of h. Let I, and 0, be the identity and the zero matrices,
respectively. Let det g be the determinant of g. For ¢ € Myn(A), we
let Ay, By, Cy. and Dy be the n x n block matrices in the upper left,
upper right, lower left, and lower right corners of g, respectively, and
write g = (A,, By: Cy, Dy). Let diag( Ny, N3, ..., N, ) be the matrix with
block matrices Ny, No,..., N, on its main diagonal and zeroes outside.
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Let My be the set of all semi-positive definite (eigenvalues > 0), semi-
integral (diagonal entries and twice of nondiagonal entries are integers),
symmetric m X m matrices, and A} be its subset consisting of positive
definite (eigenvalues > 0) matrices.

Let G, = GSpE(R) = {g € M2a(R)|Jnlg] = 7Jn, 7 > 0} where
Jn = (On, In; =I5, 0,). 7 is a real number determined by g, which we
often denote by 7(g). Let I'™ = Spu(Z) = {M € Man(Z)|Jn[M] = Ju}
and L™ = L} = {g € Mzn(Z[%])iJn{g] = p®Jp, ¢ € Z} where p is a
prime. § is an integer determined by g, which we often denote by é(g).

For other general properties and terminologies, we refer the readers
to [M], [A2].

1. Preliminaries

We introduce an abstract Hecke ring and some basic properties.

Let G be a multiplicative group and I be its subgroup. Let I be the
commensurator subgroup of ' in G, i.e., [ = {g € G|lg~'TgNT is of
finite index in both ¢7!T'g and T'}. Let L be a semi-group containing T’
and contained in I'. Let (I', L) be a Hecke pair, i.e.,, 'L = LT = L. Let

V(T, L) be the vector space over C spanned by the formal left cosets
n

(T'g), g € L. For X = Zai(l"g,-) € V(T,L), a¢; € C, and g € L,

1=1
m

we set X g = » ai(Tgig) € V(I',L). We define L(T',L) = {X €

1=1
V(D,L)|X - M = X for any M € T'}. L(T,L) is in fact a ring under
the multiplication defined by X -Y = Z aibj(Tgih;) € L(T', L) for any

17]
X =5 a;i(Tg:), Y =3 b;(Th;) € L(T,L). L(T, L) is called the Hecke
ring of the Hecke pair (I", L).

n
We define a formal double coset (I'gT"), ¢ € L, by (T'gT') = Z(ng)
i=1

when I'gT" is a disjoint union of I'gq,...,I'g,, ¢i € L. Since L is con-
tained in T, ¢ !TgNT is of finite index in T and the index is exactly
wo I My, .., M, are the left coset representatives of g ''gNT in T,
then I'¢gT is a disjoint union of TgM;i,... ., T'gM,, ¢M; € L, so that
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(TgT) = 3 _(TgM,).

It is known [A1] that the formal left cosets (I'gT), ¢ € L, form a
basis for £(T', L).
Let (I', L), (I'", L") be Hecke pairs satisfying the conditions

(1.1) I'cT, Tl =L, and TNL'L~ ' I

Then for X = }ai(T'g:) € L(T,L), ¢; can be replaced by g} € L’
because of the second condition so that X can be written in the form
X =3 ai(lg;). We define a map ¢ = e(L(T, L), L(T', L") : LT, L) —
L(T', L") by

(1.2) o(X) =) aiT'g}) € LI, L").

Then this map is an injective ring homomorphism. Moreover, it is an
isomorphism if [T': ¢'~'T¢' NT) = [[': ¢'~'T"¢' N TV] for every ¢' € L'.

2. Hecke ring £3(q,T)

Let p be a prime and let n, ¢ be positive integers such that p J . We
set

(2.1) Io(g) ={M €T |Cm =0 (modq)}
and

(2.2) I7 = {MeT"|Cy =0)}.

We also set

(2.3) Ly(q) = Lg,(g) = {g€ L™ |Cy = 0 (mod ¢)}
and

(2.4) Ly =Ly, ={geL"|C, =0}.

103



Jae-Myung Chung and Myung-Hwan Kim

It is well-known [A1] that (T'™, L"), (T¢(q), L§(g)), and (I'g, Lg ) are
all Hecke pairs and we denote the corresponding Hecke rings L(I'", L"),
£(T3(a), L (q)). and £(TF, L§) by £ = L7, £2(q) = L3,(), and LF =

o p respectively. Let A" = SL,.(Z) and let

(25) V*=V!={D€ Mn(Z[p"])| det D =p’, § € Z}.

Then (A™, V™) is also a Hecke pair and we denote the corresponding
Hecke ring L(A™, V") by D" = Dj.

The pair {(I'", L"),(T'5(q), L}(q))} satisfies the conditions (1.1). So
do the pairs {(T'5(q), L3 (q)), (T§, L§)} and {(T"*,L"),(I's, Ly )}. There-

fore, we have the following ring monomorphisms:

(2.6) a =e(L™ LY(q)): L™ — Lg(q).
A" =e(Lg(q),Ly) : Lo(g) — Lg.

and

(2.8) e” =e(L™Ly): L™ — Ly,

In fact, a™ is an isomorphism [A1l].
It is obvious that the following diagram commutes:

o S o
(2.9) al N /8"
£L5(q)

We denote the image of £® under ¢” by L. From the above, it is clear
that

(2.10) Ly =e™(L") = 8"(L5(q))

and that LY is a subrings of £}. We now introduce even subrings of
the above Hecke rings. We set

(2.11) E" = EF = {g € L"|6(g) € 22},
(2.12) Eg(q) = Eg,(q) = {9 € Ly(q) | 6(g) € 2Z},
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and
(2.13) E} = Ea',p = {g € Ly |é(g) € 2Z}.

Obvionsly, Ef(q) = E® N L§(q) and Ef = E" N L}. Again (I'", E™),
(T'o(q), Ei(q)), and (T'§, EF) are all Hecke pairs. The corresponding
Hecke rings will be denoted by £", £}'(q), and £, and they are the
even subrings of L™, L£§(q), and L, respectively. We set

(2.14) Eg =e™(&") = 8"(&'(9))-
This is the even subring of L.

Let
(2.15) K} = diag(In_,,pl,, p*In_,,pl,)

for s =0,1,2,...,n. Note that §(K) = 2. We denote the double coset
(T'o(q)KTG(q)) in LF(g) by T(KP). Let L3(q,T) be the subring of
L5(q) generated by T(K¢), T(K{), -, T(K?_;), and T(K")*!, ie.,
(2.16)  Lg(q,T) = C[T(Ky), T(KT), -+, T(K7_y), T(K)*"].

It is well-known [Z1] that L§(q,T) = E}(q).

Finally, we set
(2.17) T(KS) = 8"(T(K}))

fors=0,1,--- ,n
We obviously have

(2.18) Ej = C[T(K}), T(K}), -, T(KI_ ), T(K")*).
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3. Ring Homomorphisms wy,¢n, ¥n

In this section, we introduce ring homomorphisms

(3.1) Wn =wnyp : L7 — D[,
(32) Pn = Pnp = Dn[til] - Cn[l]a
and

(33) wn = ¢n,p . Eg hand Cﬂ[£]7

which play crucial roles in what follows. Here
(3.4) C.lz) = ClzE!, =, - 2.

Let X € £} X can be written in the form X = ) ai(Tggi), 9i =
5 D ,
<p ODz IB),> € L§ where 6; = é(¢g;) € Z and D; € V" for each 2.
Here D* = (D)~
We define

(3.5) wa(X) =Y ait®(A"D;) € D"[t*].

Clearly, 6; and (A" D;) are invariants of the left coset (I'§g;) for each 1.
Hence wy, is a well-defined ring homomorphism : £J — D*[t*!]. wy, in
fact, is an epimorphism [Sa].

Let Z = S a;t%(A"D;) € D*[t*!]. D; can be chosen to be upper
triangular in the form

p*i * *
d.’2
(3.6) pi=| 9 P
: . *
0 ... 0 phn
for each 1. We define
(3.7) on(Z2) = aaf T (z;p77)" € Calzl.
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Since d,,- -+ ,d;, are invariants of the left coset (A™D;) for each 1, pn
is also a well-defined ring homomorphism : D*[t*!] — C,[z].
We now set

(3.8) Yn = ppowy : L§ — Cplz)].
Let S, be the symmetric group on z1,--- ,r, and let W, be the
group of automorphisms of C,[z] generated by S, and oi, -+ ,0n,

where o0; is an automorphism of C,[z] defined by

. __] . .
(3.9) Oi:Tg > TeTi, T Ty, T; x4, Vi # 0,1,

for each i = 1,2,...,n. Let Su[z], Wy[z] be the subrings of C,[z] con-
sisting of all the elements that are invariant under S,, W,, respectively.
Satake proved the followings [Sal:

(3.10) @n : Dt ~ S, 2]

and

The generators of W,[z] are explicitely known and they are
(3.12) An(z)® = (zfar - za)E

(313)  Talz)=z0)_s'(z1,+  2n) = 2ollj=y(1 4 7))
=0

and
(3.14) R (z) =s'(zy, - JTapaT e znl), 1<i<n -1,
where s'(~) is the elementary symmetric polynomial of homogeneous
degree 7 in the corresponding variables.

Let W} be the automorphism group of Cp[z] generated by W, and
oq, where oy i1s an automorphism of C,[z] defined by
(3.15) 00 1 Ty > —To, T; — Tq, Vi F 0,
and let W,F[z] be the subring of C,[z] consisting of W.F-invariant ele-
ments. Then we have
(3.16) Yn  Ef ~ WHz).

Wz] is generated by A,(z)*, T,(2)?, and Ri(z) fori =1,2,---,
n—1
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4. l(r,2)
Let 0 < r <1 be integers. We set

(41)  Uni) = i) = {4 = "4 € Mi(Fp)lrp(4) =1},

where 7,(A) is the rank of A over F,. Obviously, /(0,i) = 1. We list
the following proposition on I(r,i) that can be deduced from results of
Carlitz and Zhuravlev:

ProPOSITION 4.1. Let

{ H;Saﬁr(pa - 1) for r 2 1
1

4.2 .= o.p) =
(4.2) @r = ¢r(p) forr =0,

, 1<a<r(p® =1 forr > 2
(43) gp-: = (,9j(p) = H a:_evgn( )
1 for r = 0,1,

and let

[Mi<a<r(* = 1) forr > 1,
a:odd

1 for r = 0.
Then
(4.5) I(r,r) = :;plﬁl(lgm) — oo plEllEl+D
and
(4.6) I(r,i) = —2—I(r,7),

Pi—rPr

where [ ] is the greatest integer function.
Proof. See [C] and [Z2].
Let

(4.7) DY, = diag(In—i—;,pli,p’I;) € V"
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(see (2.5)) and let

2 n*. ..
(49) My = (V05 Ko@) ey
ij

where X;;(A) = diag(On—i-;,4,0;) € Mn(Z) for A =*'A € Mi(Z). We

fix a complete set R;; of representatives of left cosets
(A" N D?]-A”(Di"j)_l)\A"

for each 7,7 > 0 with ¢ + 7 < n. Let

7’*
(4.9) = (LO g) €TE for U € GLn(Z)
and
n In B n

0 0 0

where B = [0 0 ‘By | € My(Z) for By € Mj;i(Z) and B, =
0 By B

‘B, € M;(Z). The following proposition is due to Zhuravlev:

PROPOSITION 4.2, Let M;(A, B,U) = M[;(A)PgKy;. Then

(4.11) T(K]) =Y (T5(g)M(A, B,U))
(%)

where the summation is over
(4.12)
t,7 > 0 such that 1 + j < n;

for A,A ='4 € M;(Z)/modp such that r,(A) =i — s;
for B, B, € M;(Z)/modp and By = 'B; € M;(Z)/modp?;
for U, U € R,‘j.
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Proof. See [22].
We set
(4.13) I35(A4) = (Do M (A)Tg) € &
For any symmetric Ay, A2 € M;(Z), one can easily veryfy that I1;;(4;) =
I1;;(Az) if and only if
(4.14) Ay = A[U)(modp) for some U € GLi(Z).

(4.14) is an equivalent relation. We let {4} be the equivalent class of
A, which is called the p-class of A. Clearly rp(A) is an invariant of the
p-class of A. We denote this by r,{A}. We set

(4.15) "= > I(4)
{A)
rp{A}=r
for each r, 0 < r < 4.
PROPOSITION 4.3,
(4.16) T(K))= Y M.

129,520
t+j5<n

Proof. From the definition (4.13) follows that for A =4 € M;(Z)

(4.17) ni(4)= > (T¢Mj(C,B,U))

B, U
Ce{A}/modp

where B,U run over the matrices described in (4.12).
From Proposition 4.2 and (4.17) follows the proposition.

We set

(4.18) Zr = Z pj(i+j+1)(AnDFjAn) c D"
0<j<n—i
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THEOREM 4.4. For s =0,1,2,--- ,n
(4.19) woT(KD)) =1 Y (i~ s,0)27.
s<ikn

Proof. From (4.15) and (4.17), we have

(4.20) = Y (T§M}(A,B,U))
A,B,U
r,,(A):r

where A = 'A € M(Z)/modp and B,U are matrices described in

(4.12).
From the definition of w, and (4.20) follows

(4.21) w77y =2 Y~ (A"DLU
ABU
rp(A)zr

The number of B’s described in (4.12) is

piI(p?YlaHN/2 — i+ g Z (A"DLU) = (A"DEA™).
UeRy;

So from the definition of I{(r,i), we obtain

wa(TI7T) = 21(r, i)p? CHYD (AT D] A™).

i
The theorem follows immediately from Proposition 4.3.

This theorem in fact gives a complete description of the relation be-
tween Ef and D" viaw, because Ej is generated by T(Kg§), T(K7),-- -,
T(R[?_,), and T(K)*!. See (2.18).

5. Main Theorem

The element $*Z§ € D™ assumes an important role in connection
with the Hecke operators acting on Siegel modular forms [Sc|, [A3].
We now give an explicit formula for the Hecke operator in Ef that
corresponds to fZZ(')’ for each n via w,.

111



Jae-Myung Chung and Myung-Hwan Kim

THEOREM ‘5.1. Let

=y
T" = T;‘ = Zo pa—(s—-i-l)- (1(23’25)'T(K;a)
(5.1) =
——1(28 +1,2s + 1)'T(K;a+1))

+e(n)(—1)p~FEDi(n, ) T(KT) € EF,
where
()_{0 if n is odd
qnr= 1 if n is even.
Then w,(T™) = t2ZF € D*[t*})].

Proof. From Theorem 4.4, we have wn(T") = t*(coZ8 + 1 Z} +- - -+
cn 4} ), where

(3]
¢ = Z (—1)*p~*(s+D (1(23, 2s)I(1 — 2s,1)
s=0

— (25 +1,25 + D)I(i — (25 + 1), i))
+e(i)(~1)Fp~FEFDIE, 0)I(0,4)
fori=1,2,--- ,n. Note that ¢y = 1. It suffices to show that ¢; = 0 for
all:=1,2,--- . n.
Let : be odd. Then the last term of ¢; is 0. From Proposition 4.1

follows that for each s =0, -- ,[i—gl‘],

1(2s,28)I(1 — 28,2) — (28 + 1,25 + 1)I( — (25 + 1),4)
= 1(25,28)(i = 25 = 1,i) ((p "0~V = 1) = (p**F = 1)) = 0,
Hence ¢; =0 for allodd 7 > 1.

Let : be even. From a direct computation using Proposition 4.1, we
get

i

2
¢ = Z(—l)sp_s(’-l)’il(2s,2s)l(i - 2s,1).

8=0
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Since
l(z — 23,1) = ——-——————l(z — 28,1 —28) = ‘»’;;p LYt —s+1)
P1—2992s P25P; 24
we have
i(i- PP [(2s,2s
(5.2) e =pii! Z A o2s Jpiye
= z -2

We now prove the following identity by induction on j:

! 30;1- 1(2s,2s)
z

*=T0_,(1+p"2)
=0 99;]‘—2.9 9923 ’

(5.3)

For j = 1, both sides of (5.3) equal to 1+ p?z. Assuming (5.3) for j —1,

we have

(5.4)
I_ (14 p*2) = (IUZ)(1 + p*2))(1 + p¥x)

(’z“:‘ P32 1(2s,2s)

F
s=0 992]'—-2—23 P25

z") (1 + p%2).

We now compare the coefficients of (5.3) and (5.4). For s = 0, both
coefficients are 1. For s = 7,

P2 (25 = 2,25 —5) 5\ (93 U25,2))
¥ , p F ‘
Yo P25-2 Yo P2

R e ) e AT
Cop¥ -1 (p¥l 1)

=1
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For1<s<j—1,

( Plios 125.2) | whis U2 —2,25-2) 2J.X o3, 1(28’2S)>—1
Prj—2—2s P25 ©3i 2 292 p s
_ $hi2 _PEia L #35-2 p2sl(25 — 2,25 —2) 4,
- ‘P;j 9’33‘-2—23 <P2+J- p2s-21(2s,2s)
_ pzj—.2s —1 . -1 (p2s _ 1)(p23—-1 ~1) 2

p2 -1 P — 1 (pt-l— 1)p?e

B p2j-—29 -1+ (p2.9 _ 1)p2j—2s 1
= ij—l =

So we can conclude that the identity (5.3) holds. Substituting j = % and
z = —p~tin (5.3), we have ¢; = p%(%“1)<pfﬂj=1(1 + p¥(—p7)) = 0.
Hence ¢; = 0 for all even 7 > 2. This completes the proof.

Note that this correspondence between T" € EY and t2Z3 € D" can
be extended to that between T™ € £J(q) = L3(q,T) and t*Z§ € D™,
where

(254
" — Tpn _ Z (_1)sp—s(s+l)(l(25,23) . T( ”2"3)

8=0

(5.5)
(25 + 1,25 +1) - T(KD 4, )

+e(m)(~)Fp EEi(n,n) - T(KD) € L3(g,T).
Note that we have for n =1
(5.6) ' =T(Ky) —(p—- DT(K}) € Lo(g, T).
This is a little bit different from the classical Hecke operator

(5.7) T'(p?) = T(K}) + T(K}) € £Y(q,T).
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As is well-known,

(5.8)

76 = (130 (5 )T8w) + (r3@ (5 ) m800))
-3 (mw (s 5)):

ad=p?
0<b<d

One can easily check that 1303 (T!) = 22(1+22%) and o108 (T} (p?)) =
zd(1+x1 +2?). This difference appears in the eigenvalues for a simulta-
neous eigenform in the spaces M} (q, x) of the classical modular forms
of weight k, level ¢, with respect to a Dirichlet character y modulo
g. Indeed, if we let f € Mj(q, x) be a simultaneous eigenform un-
der the Hecke operators in £(q,T), then the eigenvalue of f for T! is
1+ (pF='\(p))* while that for T'(p?) is 1 + p* " x(p) + (p¥ ' x(p))%.
See [Sel.
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