A CORRESPONDENCE BETWEEN HECKE RINGS $\mathcal{L}_0^n(q)$ AND \mathcal{D}^n

JAE-MYUNG CHUNG AND MYUNG-HWAN KIM

0. Introduction and Notations

Hecke operators of degree n are closely related to polynomials in $\mathbf{C}[x_0^{\pm 1}, x_1^{\pm 1}, \cdots, x_n^{\pm 1}]$. Many mathematicians like Satake [Sa], Shimura [Sh], Andrianov [A1], to name a few, did a great deal of work on this relation. One way of studying this relation is via the Hecke ring \mathcal{D}_p^n associated to the Hecke pair (Λ^n, V^n) , where $\Lambda^n = SL_n(\mathbf{Z})$ and $V^n = \{D \in M_n(\mathbf{Z}[p^{-1}]) \mid \det D = p^{\delta}, \ \delta \in \mathbf{Z}\}$.

The purpose of this article is to give a certain correspondence between Hecke operators and elements in \mathcal{D}_p^n , which is very interesting and useful in connection with the Hecke operators acting on Siegel modular forms.

Let $\mathbf{Z}, \mathbf{Q}, \mathbf{R}$, and \mathbf{C} be the ring of rational integers, the field of rational numbers, the field of real numbers, and the field of complex numbers, respectively. Let \mathbf{F}_p be the field of p elements, where p is a prime.

Let $M_{m,n}(A)$ be the set of all $m \times n$ matrices over A, a commutative ring with 1, and let $M_n(A) = M_{n,n}(A)$. Let $GL_n(A)$ and $SL_n(A)$ be the group of invertible matrices in $M_n(A)$ and its subgroup consisting of matrices of determinant 1, respectively.

For $g \in M_m(A)$, $h \in M_{m,n}(A)$, let $g[h] = {}^t hgh$, where ${}^t h$ is the transpose of h. Let I_n and 0_n be the identity and the zero matrices, respectively. Let det g be the determinant of g. For $g \in M_{2n}(A)$, we let A_g , B_g , C_g , and D_g be the $n \times n$ block matrices in the upper left, upper right, lower left, and lower right corners of g, respectively, and write $g = (A_g, B_g; C_g, D_g)$. Let $\operatorname{diag}(N_1, N_2, \ldots, N_r)$ be the matrix with block matrices N_1, N_2, \ldots, N_r on its main diagonal and zeroes outside.

Received March 25, 1991.

This work was supported by Seoul National University DaeWoo Research Fund.

Let \mathcal{N}_m be the set of all semi-positive definite (eigenvalues ≥ 0), semi-integral (diagonal entries and twice of nondiagonal entries are integers), symmetric $m \times m$ matrices, and \mathcal{N}_m^+ be its subset consisting of positive definite (eigenvalues > 0) matrices.

Let $G_n = GSp_n^+(\mathbf{R}) = \{g \in M_{2n}(\mathbf{R}) | J_n[g] = rJ_n, r > 0\}$ where $J_n = (0_n, I_n; -I_n, 0_n)$. r is a real number determined by g, which we often denote by r(g). Let $\Gamma^n = Sp_n(\mathbf{Z}) = \{M \in M_{2n}(\mathbf{Z}) | J_n[M] = J_n\}$ and $L^n = L_p^n = \{g \in M_{2n}(\mathbf{Z}[\frac{1}{p}]) | J_n[g] = p^{\delta}J_n, \delta \in \mathbf{Z}\}$ where p is a prime. δ is an integer determined by g, which we often denote by $\delta(g)$.

For other general properties and terminologies, we refer the readers to [M], [A2].

1. Preliminaries

We introduce an abstract Hecke ring and some basic properties.

Let G be a multiplicative group and Γ be its subgroup. Let $\tilde{\Gamma}$ be the commensurator subgroup of Γ in G, i.e., $\tilde{\Gamma} = \{g \in G | g^{-1}\Gamma g \cap \Gamma \text{ is of finite index in both } g^{-1}\Gamma g \text{ and } \Gamma \}$. Let L be a semi-group containing Γ and contained in $\tilde{\Gamma}$. Let (Γ, L) be a Hecke pair, i.e., $\Gamma L = L\Gamma = L$. Let $V(\Gamma, L)$ be the vector space over \mathbb{C} spanned by the formal left cosets

$$(\Gamma g), \ g \in L. \ \ \text{For} \ X = \sum_{i=1}^{\mu} a_i(\Gamma g_i) \in V(\Gamma, L), \ a_i \in \mathbb{C}, \ \text{and} \ g \in L,$$

we set
$$X \cdot g = \sum_{i=1}^{\mu} a_i(\Gamma g_i g) \in V(\Gamma, L)$$
. We define $\mathcal{L}(\Gamma, L) = \{X \in \mathcal{L}(\Gamma, L) \in \mathcal{L}(\Gamma, L) \in \mathcal{L}(\Gamma, L) \in \mathcal{L}(\Gamma, L) \}$

 $V(\Gamma, L)|X \cdot M = X$ for any $M \in \Gamma$. $\mathcal{L}(\Gamma, L)$ is in fact a ring under the multiplication defined by $X \cdot Y = \sum_{i,j} a_i b_j (\Gamma g_i h_j) \in \mathcal{L}(\Gamma, L)$ for any

 $X = \sum a_i(\Gamma g_i), Y = \sum b_j(\Gamma h_j) \in \mathcal{L}(\Gamma, L).$ $\mathcal{L}(\Gamma, L)$ is called the Hecke ring of the Hecke pair (Γ, L) .

We define a formal double coset $(\Gamma g\Gamma)$, $g \in L$, by $(\Gamma g\Gamma) = \sum_{i=1}^{\mu} (\Gamma g_i)$ when $\Gamma g\Gamma$ is a disjoint union of $\Gamma g_1, \ldots, \Gamma g_{\mu}$, $g_i \in L$. Since L is contained in $\tilde{\Gamma}$, $g^{-1}\Gamma g \cap \Gamma$ is of finite index in Γ and the index is exactly μ . If M_1, \ldots, M_{μ} are the left coset representatives of $g^{-1}\Gamma g \cap \Gamma$ in Γ , then $\Gamma g\Gamma$ is a disjoint union of $\Gamma gM_1, \ldots, \Gamma gM_{\mu}$, $gM_i \in L$, so that

A correspondence between Hecke rings $\mathcal{L}_0^n(q)$ and \mathcal{D}^n

$$(\Gamma g \Gamma) = \sum_{i=1}^{\mu} (\Gamma g M_i).$$

It is known [A1] that the formal left cosets $(\Gamma g\Gamma)$, $g \in L$, form a basis for $\mathcal{L}(\Gamma, L)$.

Let (Γ, L) , (Γ', L') be Hecke pairs satisfying the conditions

(1.1)
$$\Gamma' \subset \Gamma, \ \Gamma L' = L, \text{ and } \Gamma \cap L' L'^{-1} \subset \Gamma'.$$

Then for $X = \sum a_i(\Gamma g_i) \in \mathcal{L}(\Gamma, L)$, g_i can be replaced by $g_i' \in L'$ because of the second condition so that X can be written in the form $X = \sum a_i(\Gamma g_i')$. We define a map $\varepsilon = \varepsilon(\mathcal{L}(\Gamma, L), \mathcal{L}(\Gamma', L')) : \mathcal{L}(\Gamma, L) \to \mathcal{L}(\Gamma', L')$ by

(1.2)
$$\varepsilon(X) = \sum a_i(\Gamma'g_i') \in \mathcal{L}(\Gamma', L').$$

Then this map is an injective ring homomorphism. Moreover, it is an isomorphism if $[\Gamma: g'^{-1}\Gamma g' \cap \Gamma] = [\Gamma': g'^{-1}\Gamma' g' \cap \Gamma']$ for every $g' \in L'$.

2. Hecke ring $\mathcal{L}_0^n(q,T)$

Let p be a prime and let n, q be positive integers such that $p \not\mid q$. We set

(2.1)
$$\Gamma_0^n(q) = \{ M \in \Gamma^n \mid C_M \equiv 0 \pmod{q} \}$$

and

(2.2)
$$\Gamma_0^n = \{ M \in \Gamma^n \, | \, C_M = 0 \}.$$

We also set

(2.3)
$$L_0^n(q) = L_{0,p}^n(q) = \{ g \in L^n \mid C_q \equiv 0 \pmod{q} \}$$

and

$$(2.4) L_0^n = L_{0,p}^n = \{ g \in L^n \mid C_q = 0 \}.$$

It is well-known [A1] that (Γ^n, L^n) , $(\Gamma_0^n(q), L_0^n(q))$, and (Γ_0^n, L_0^n) are all Hecke pairs and we denote the corresponding Hecke rings $\mathcal{L}(\Gamma^n, L^n)$, $\mathcal{L}(\Gamma_0^n(q), L_0^n(q))$, and $\mathcal{L}(\Gamma_0^n, L_0^n)$ by $\mathcal{L}^n = \mathcal{L}_p^n, \mathcal{L}_0^n(q) = \mathcal{L}_{0,p}^n(q)$, and $\mathcal{L}_0^n = \mathcal{L}_{0,p}^n$ respectively. Let $\Lambda^n = SL_n(\mathbf{Z})$ and let

$$(2.5) V^n = V_p^n = \{ D \in M_n(\mathbf{Z}[p^{-1}]) \mid \det D = p^{\delta}, \ \delta \in \mathbf{Z} \}.$$

Then (Λ^n, V^n) is also a Hecke pair and we denote the corresponding Hecke ring $\mathcal{L}(\Lambda^n, V^n)$ by $\mathcal{D}^n = \mathcal{D}_p^n$.

The pair $\{(\Gamma^n, L^n), (\Gamma_0^n(q), L_0^n(q))\}$ satisfies the conditions (1.1). So do the pairs $\{(\Gamma_0^n(q), L_0^n(q)), (\Gamma_0^n, L_0^n)\}$ and $\{(\Gamma^n, L^n), (\Gamma_0^n, L_0^n)\}$. Therefore, we have the following ring monomorphisms:

(2.6)
$$\alpha^{n} = \varepsilon(\mathcal{L}^{n}, \mathcal{L}_{0}^{n}(q)) : \mathcal{L}^{n} \to \mathcal{L}_{0}^{n}(q),$$

(2.7)
$$\beta^{n} = \varepsilon(\mathcal{L}_{0}^{n}(q), \mathcal{L}_{0}^{n}) : \mathcal{L}_{0}^{n}(q) \to \mathcal{L}_{0}^{n}.$$

and

(2.8)
$$\varepsilon^{n} = \varepsilon(\mathcal{L}^{n}, \mathcal{L}_{0}^{n}) : \mathcal{L}^{n} \to \mathcal{L}_{0}^{n}.$$

In fact, α^n is an isomorphism [A1].

It is obvious that the following diagram commutes:

(2.9)
$$\begin{array}{ccc} \mathcal{L}^n & \xrightarrow{\epsilon^n} & \mathcal{L}^n_0 \\ \alpha^n \searrow & \nearrow \beta^n \\ \mathcal{L}^n_0(q) & \end{array}$$

We denote the image of \mathcal{L}^n under ε^n by \mathbf{L}_0^n . From the above, it is clear that

(2.10)
$$\mathbf{L}_0^n = \varepsilon^n(\mathcal{L}^n) = \beta^n(\mathcal{L}_0^n(q))$$

and that \mathbf{L}_0^n is a subrings of \mathcal{L}_0^n . We now introduce even subrings of the above Hecke rings. We set

(2.11)
$$E^{n} = E_{n}^{n} = \{ g \in L^{n} \mid \delta(g) \in 2\mathbf{Z} \},$$

(2.12)
$$E_0^n(q) = E_{0,p}^n(q) = \{ g \in L_0^n(q) \mid \delta(g) \in 2\mathbf{Z} \},$$

and

(2.13)
$$E_0^n = E_{0,p}^n = \{ g \in L_0^n \mid \delta(g) \in 2\mathbb{Z} \}.$$

Obviously, $E_0^n(q) = E^n \cap L_0^n(q)$ and $E_0^n = E^n \cap L_0^n$. Again (Γ^n, E^n) , $(\Gamma_0^n(q), E_0^n(q))$, and (Γ_0^n, E_0^n) are all Hecke pairs. The corresponding Hecke rings will be denoted by \mathcal{E}^n , $\mathcal{E}_0^n(q)$, and \mathcal{E}_0^n , and they are the even subrings of \mathcal{L}^n , $\mathcal{L}_0^n(q)$, and \mathcal{L}_0^n , respectively. We set

(2.14)
$$\mathbf{E}_0^n = \varepsilon^n(\mathcal{E}^n) = \beta^n(\mathcal{E}_0^n(q)).$$

This is the even subring of L_0^n .

Let

(2.15)
$$K_s^n = \text{diag}(I_{n-s}, pI_s, p^2 I_{n-s}, pI_s)$$

for $s=0,1,2,\ldots,n$. Note that $\delta(K_s^n)=2$. We denote the double coset $(\Gamma_0^n(q)K_s^n\Gamma_0^n(q))$ in $\mathcal{L}_0^n(q)$ by $T(K_s^n)$. Let $\mathcal{L}_0^n(q,T)$ be the subring of $\mathcal{L}_0^n(q)$ generated by $T(K_0^n), T(K_1^n), \cdots, T(K_{n-1}^n)$, and $T(K_n^n)^{\pm 1}$, i.e.,

(2.16)
$$\mathcal{L}_0^n(q,T) = \mathbf{C}[T(K_0^n), T(K_1^n), \cdots, T(K_{n-1}^n), T(K_n^n)^{\pm 1}].$$

It is well-known [Z1] that $\mathcal{L}_0^n(q,T) = \mathcal{E}_0^n(q)$. Finally, we set

(2.17)
$$\mathbf{T}(K_s^n) = \beta^n(T(K_s^n))$$

for $s = 0, 1, \dots, n$.

We obviously have

(2.18)
$$\mathbf{E}_0^n = \mathbf{C}[\mathbf{T}(K_0^n), \mathbf{T}(K_1^n), \cdots, \mathbf{T}(K_{n-1}^n), \mathbf{T}(K_n^n)^{\pm 1}].$$

3. Ring Homomorphisms $\omega_n, \varphi_n, \psi_n$

In this section, we introduce ring homomorphisms

(3.1)
$$\omega_n = \omega_{n,p} : \mathcal{L}_0^n \to \mathcal{D}^n[t^{\pm 1}],$$

(3.2)
$$\varphi_n = \varphi_{n,p} = \mathcal{D}^n[t^{\pm 1}] \to \mathbf{C}_n[\underline{x}],$$

and

(3.3)
$$\psi_n = \psi_{n,p} : \mathcal{L}_0^n \to \mathbf{C}_n[\underline{x}],$$

which play crucial roles in what follows. Here

(3.4)
$$\mathbf{C}_{n}[\underline{x}] = \mathbf{C}[x_{0}^{\pm 1}, x_{1}^{\pm 1}, \cdots, x_{n}^{\pm 1}].$$

Let $X \in \mathcal{L}_0^n$. X can be written in the form $X = \sum a_i(\Gamma_0^n g_i)$, $g_i = \begin{pmatrix} p^{\delta_i} D_i^* & B_i \\ 0 & D_i \end{pmatrix} \in \mathcal{L}_0^n$ where $\delta_i = \delta(g_i) \in \mathbf{Z}$ and $D_i \in V^n$ for each i. Here $D^* = ({}^tD)^{-1}$.

We define

(3.5)
$$\omega_n(X) = \sum a_i t^{\delta_i} (\Lambda^n D_i) \in \mathcal{D}^n[t^{\pm 1}].$$

Clearly, δ_i and $(\Lambda^n D_i)$ are invariants of the left coset $(\Gamma_0^n g_i)$ for each i. Hence ω_n is a well-defined ring homomorphism : $\mathcal{L}_0^n \to \mathcal{D}^n[t^{\pm 1}]$. ω_n , in fact, is an epimorphism [Sa].

Let $Z = \sum a_i t^{\delta_i} (\Lambda^n D_i) \in \mathcal{D}^n[t^{\pm 1}]$. D_i can be chosen to be upper triangular in the form

(3.6)
$$D_{i} = \begin{pmatrix} p^{d_{i_{1}}} & * & \cdots & * \\ 0 & p^{d_{i_{2}}} & & \vdots \\ \vdots & & \ddots & * \\ 0 & \cdots & 0 & p^{d_{i_{n}}} \end{pmatrix}$$

for each i. We define

(3.7)
$$\varphi_n(Z) = \sum a_i x_0^{\delta_i} \prod_{j=1}^n (x_j p^{-j})^{d_{i_j}} \in \mathbf{C}_n[\underline{x}].$$

Since d_{i_1}, \dots, d_{i_n} are invariants of the left coset $(\Lambda^n D_i)$ for each i, φ_n is also a well-defined ring homomorphism : $\mathcal{D}^n[t^{\pm 1}] \to \mathbf{C}_n[\underline{x}]$.

We now set

(3.8)
$$\psi_n = \varphi_n \circ \omega_n : \mathcal{L}_0^n \to \mathbf{C}_n[\underline{x}].$$

Let S_n be the symmetric group on x_1, \dots, x_n and let W_n be the group of automorphisms of $\mathbf{C}_n[\underline{x}]$ generated by S_n and $\sigma_1, \dots, \sigma_n$, where σ_i is an automorphism of $\mathbf{C}_n[\underline{x}]$ defined by

$$(3.9) \sigma_i: x_0 \mapsto x_0 x_i, \ x_i \mapsto x_i^{-1}, \ x_i \mapsto x_i, \ \forall i \neq 0, i,$$

for each i = 1, 2, ..., n. Let $S_n[\underline{x}]$, $W_n[\underline{x}]$ be the subrings of $\mathbf{C}_n[\underline{x}]$ consisting of all the elements that are invariant under S_n , W_n , respectively. Satake proved the followings [Sa]:

(3.10)
$$\varphi_n : \mathcal{D}^n[t^{\pm 1}] \simeq S_n[x]$$

and

$$(3.11) \psi_n : \mathbf{L}_0^n \simeq W_n[\underline{x}].$$

The generators of $W_n[\underline{x}]$ are explicitly known and they are

(3.12)
$$\Delta_n(\underline{x})^{\pm 1} = (x_0^2 x_1 \cdots x_n)^{\pm 1}.$$

(3.13)
$$T_n(\underline{x}) = x_0 \sum_{i=0}^n s^i(x_1, \dots, x_n) = x_0 \prod_{j=1}^n (1 + x_j)$$

and

(3.14)
$$R_n^i(\underline{x}) = s^i(x_1, \dots, x_n, x_1^{-1}, \dots, x_n^{-1}), \ 1 \le i \le n-1,$$

where $s^{i}(-)$ is the elementary symmetric polynomial of homogeneous degree i in the corresponding variables.

Let W_n^+ be the automorphism group of $\mathbf{C}_n[\underline{x}]$ generated by W_n and σ_0 , where σ_0 is an automorphism of $\mathbf{C}_n[\underline{x}]$ defined by

$$(3.15) \sigma_0: x_0 \mapsto -x_0, \ x_i \mapsto x_i, \ \forall i \neq 0,$$

and let $W_n^+[\underline{x}]$ be the subring of $\mathbf{C}_n[\underline{x}]$ consisting of W_n^+ -invariant elements. Then we have

$$(3.16) \psi_n : \mathbf{E}_0^n \simeq W_n^+[x].$$

 $W_n^+[\underline{x}]$ is generated by $\Delta_n(\underline{x})^{\pm 1}$, $T_n(\underline{x})^2$, and $R_n^i(\underline{x})$ for $i = 1, 2, \dots, n-1$.

Jae-Myung Chung and Myung-Hwan Kim

4. l(r, i)

Let $0 \le r \le i$ be integers. We set

$$(4.1) l(r,i) = l_p(r,i) = |\{A = {}^t A \in M_i(\mathbf{F}_p) | r_p(A) = r\}|,$$

where $r_p(A)$ is the rank of A over \mathbf{F}_p . Obviously, l(0,i) = 1. We list the following proposition on l(r,i) that can be deduced from results of Carlitz and Zhuravley:

PROPOSITION 4.1. Let

(4.2)
$$\varphi_r = \varphi_r(p) = \begin{cases} \prod_{1 \le a \le r}^r (p^a - 1) & \text{for } r \ge 1\\ 1 & \text{for } r = 0, \end{cases}$$
$$\prod_{1 \le a \le r} (p^a - 1) & \text{for } r \ge 2$$

(4.3)
$$\varphi_r^+ = \varphi_r^+(p) = \begin{cases} \prod_{\substack{1 \le a \le r \\ 1 \text{ even}}} (p^a - 1) & \text{for } r \ge 2 \\ 1 & \text{for } r = 0, 1, \end{cases}$$

and let

$$(4.4) \varphi_r^- = \varphi_r^-(p) = \begin{cases} \prod_{\substack{1 \le a \le r \\ a : \text{odd}}} (p^a - 1) & \text{for } r \ge 1, \\ 1 & \text{for } r = 0. \end{cases}$$

Then

(4.5)
$$l(r,r) = \frac{\varphi_r}{\varphi_r^+} p^{\left[\frac{r}{2}\right]\left(\left[\frac{r}{2}\right]+1\right)} = \varphi_r^- p^{\left[\frac{r}{2}\right]\left(\left[\frac{r}{2}\right]+1\right)}$$

and

(4.6)
$$l(r,i) = \frac{\varphi_i}{\varphi_{i-r}\varphi_r}l(r,r),$$

where [] is the greatest integer function.

Proof. See [C] and [Z2].

Let

$$(4.7) D_{ij}^n = \operatorname{diag}(I_{n-i-j}, pI_i, p^2I_j) \in V^n$$

(see (2.5)) and let

$$(4.8) M_{ij}^n(A) = \begin{pmatrix} p^2 D_{ij}^* & X_{ij}(A) \\ 0 & D_{ij} \end{pmatrix} \in E_0^n$$

where $X_{ij}(A) = \operatorname{diag}(0_{n-i-j}, A, 0_j) \in M_n(\mathbf{Z})$ for $A = {}^tA \in M_i(\mathbf{Z})$. We fix a complete set R_{ij} of representatives of left cosets

$$(\Lambda^n \cap D_{ij}^n \Lambda^n (D_{ij}^n)^{-1}) \setminus \Lambda^n$$

for each $i, j \ge 0$ with $i + j \le n$. Let

(4.9)
$$K_U^n = \begin{pmatrix} U^* & 0 \\ 0 & U \end{pmatrix} \in \Gamma_0^n \quad \text{for} \quad U \in GL_n(\mathbf{Z})$$

and

$$(4.10) P_B^n = \begin{pmatrix} I_n & B \\ 0 & I_n \end{pmatrix} \in \Gamma_0^n$$

where $B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & {}^tB_1 \\ 0 & B_1 & B_2 \end{pmatrix} \in M_n(\mathbf{Z}) \text{ for } B_1 \in M_{ji}(\mathbf{Z}) \text{ and } B_2 =$

 ${}^{t}B_{2} \in M_{j}(\mathbf{Z})$. The following proposition is due to Zhuravlev:

PROPOSITION 4.2. Let $M_{ij}^n(A,B,U)=M_{ij}^n(A)P_B^nK_U^n$. Then

(4.11)
$$T(K_s^n) = \sum_{(*)} (\Gamma_0^n(q) M_{ij}^n(A, B, U))$$

where the summation is over

 $(*) \begin{cases} i, j \geq 0 \text{ such that } i + j \leq n; \\ \text{for } A, A = {}^{t}A \in M_{i}(\mathbf{Z})/\text{mod } p \text{ such that } r_{p}(A) = i - s; \\ \text{for } B, B_{1} \in M_{ji}(\mathbf{Z})/\text{mod } p \text{ and } B_{2} = {}^{t}B_{2} \in M_{j}(\mathbf{Z})/\text{mod } p^{2}; \\ \text{for } U, \ U \in R_{ii}. \end{cases}$

Proof. See [Z2].

We set

(4.13)
$$\Pi_{ij}^n(A) = (\Gamma_0^n M_{ij}^n(A) \Gamma_0^n) \in \mathcal{E}_0^n.$$

For any symmetric $A_1, A_2 \in M_i(\mathbf{Z})$, one can easily veryfy that $\Pi_{ij}(A_1) = \Pi_{ij}(A_2)$ if and only if

$$(4.14) A_1 \equiv A_2[U] \pmod{p} \text{for some} U \in GL_i(\mathbf{Z}).$$

(4.14) is an equivalent relation. We let $\{A\}$ be the equivalent class of A, which is called the p-class of A. Clearly $r_p(A)$ is an invariant of the p-class of A. We denote this by $r_p\{A\}$. We set

(4.15)
$$\Pi_{ij}^{n,r} = \sum_{\substack{\{A\}\\r_p\{A\}=r}} \Pi_{ij}^n(A)$$

for each r, $0 \le r \le i$.

Proposition 4.3.

(4.16)
$$\mathbf{T}(K_s^n) = \sum_{\substack{i \geq s, j \geq 0 \\ i+j \leq n}} \prod_{ij}^{n,i-s}.$$

Proof. From the definition (4.13) follows that for $A = {}^t A \in M_i(\mathbf{Z})$

(4.17)
$$\Pi_{ij}^{n}(A) = \sum_{\substack{B,U \\ C \in \{A\}/\text{mod } p}} (\Gamma_{0}^{n} M_{ij}^{n}(C, B, U))$$

where B, U run over the matrices described in (4.12).

From Proposition 4.2 and (4.17) follows the proposition.

We set

(4.18)
$$Z_i^n = \sum_{0 \le j \le n-i} p^{j(i+j+1)} (\Lambda^n D_{ij}^n \Lambda^n) \in \mathcal{D}^n.$$

A correspondence between Hecke rings $\mathcal{L}_0^n(q)$ and \mathcal{D}^n

THEOREM 4.4. For $s = 0, 1, 2, \dots, n$.

(4.19)
$$\omega_n(\mathbf{T}(K_s^n)) = t^2 \sum_{s \le i \le n} l(i-s,i) Z_i^n.$$

Proof. From (4.15) and (4.17), we have

(4.20)
$$\Pi_{ij}^{n,r} = \sum_{\substack{A,B,U \\ r_p(A)=r}} (\Gamma_0^n M_{ij}^n(A,B,U))$$

where $A = {}^{t}A \in M_{i}(\mathbf{Z})/\text{mod } p$ and B, U are matrices described in (4.12).

From the definition of ω_n and (4.20) follows

(4.21)
$$\omega_n(\Pi_{ij}^{n,r}) = t^2 \sum_{\substack{A,B,U \\ r_n(A) = r}} (\Lambda^n D_{ij}^n U).$$

The number of B's described in (4.12) is

$$p^{ij}(p^2)^{j(j+1)/2} = p^{j(i+j+1)} \text{ and } \sum_{U \in R_{ij}} (\Lambda^n D^n_{ij} U) = (\Lambda^n D^n_{ij} \Lambda^n).$$

So from the definition of l(r, i), we obtain

$$\omega_n(\Pi_{ij}^{n,r}) = t^2 l(r,i) p^{j(i+j+1)} (\Lambda^n D_{ij}^n \Lambda^n).$$

The theorem follows immediately from Proposition 4.3.

This theorem in fact gives a complete description of the relation between \mathbf{E}_0^n and \mathcal{D}^n via ω_n because \mathbf{E}_0^n is generated by $\mathbf{T}(K_0^n), \mathbf{T}(K_1^n), \cdots, \mathbf{T}(K_{n-1}^n)$, and $\mathbf{T}(K_n^n)^{\pm 1}$. See (2.18).

5. Main Theorem

The element $t^2Z_0^n \in \mathcal{D}^n$ assumes an important role in connection with the Hecke operators acting on Siegel modular forms [Sc], [A3]. We now give an explicit formula for the Hecke operator in \mathbf{E}_0^n that corresponds to $t^2Z_0^n$ for each n via ω_n .

THEOREM 5.1. Let

(5.1)
$$\mathbf{T}^{n} = \mathbf{T}_{p}^{n} = \sum_{s=0}^{\left[\frac{n-1}{2}\right]} \frac{(-1)^{s}}{p^{s(s+1)}} \left(l(2s,2s) \cdot \mathbf{T}(K_{2s}^{n})\right) \\ -l(2s+1,2s+1) \cdot \mathbf{T}(K_{2s+1}^{n})\right) \\ + \varepsilon(n)(-1)^{\frac{n}{2}} p^{-\frac{n}{2}(\frac{n}{2}+1)} l(n,n) \cdot \mathbf{T}(K_{n}^{n}) \in \mathbf{E}_{0}^{n},$$

where

$$\varepsilon(n) = \begin{cases} 0 & \text{if } n \text{ is odd} \\ 1 & \text{if } n \text{ is even.} \end{cases}$$

Then $\omega_n(\mathbf{T}^n) = t^2 Z_0^n \in \mathcal{D}^n[t^{\pm 1}].$

Proof. From Theorem 4.4, we have $\omega_n(\mathbf{T}^n) = t^2(c_0 Z_0^n + c_1 Z_1^n + \cdots + c_n Z_n^n)$, where

$$c_{i} = \sum_{s=0}^{\left[\frac{i-1}{2}\right]} (-1)^{s} p^{-s(s+1)} \Big(l(2s, 2s) l(i-2s, i) \\ - l(2s+1, 2s+1) l(i-(2s+1), i) \Big) \\ + \varepsilon(i) (-1)^{\frac{i}{2}} p^{-\frac{i}{2}(\frac{i}{2}+1)} l(i, i) l(0, i)$$

for $i = 1, 2, \dots, n$. Note that $c_0 = 1$. It suffices to show that $c_i = 0$ for all $i = 1, 2, \dots, n$.

Let *i* be odd. Then the last term of c_i is 0. From Proposition 4.1 follows that for each $s = 0, \dots, \left[\frac{i-1}{2}\right]$,

$$l(2s,2s)l(i-2s,i) - l(2s+1,2s+1)l(i-(2s+1),i)$$

$$= l(2s,2s)l(i-2s-1,i)\Big((p^{i-(i-2s-1)}-1)-(p^{2s+1}-1)\Big) = 0.$$

Hence $c_i = 0$ for all odd $i \ge 1$.

Let i be even. From a direct computation using Proposition 4.1, we get

$$c_{i} = \sum_{s=0}^{\frac{1}{2}} (-1)^{s} p^{-s(s-1)-i} l(2s, 2s) l(i-2s, i).$$

A correspondence between Hecke rings $\mathcal{L}_0^n(q)$ and \mathcal{D}^n

Since

$$l(i-2s,i) = \frac{\varphi_i}{\varphi_{i-2s}\varphi_{2s}}l(i-2s,i-2s) = \frac{\varphi_i}{\varphi_{2s}\varphi_{i-2s}^+}p^{(\frac{i}{2}-s)(\frac{i}{2}-s+1)},$$

we have

(5.2)
$$c_i = p^{\frac{i}{2}(\frac{i}{2}-1)} \varphi_i^{-} \left(\sum_{s=0}^{\frac{i}{2}} \frac{\varphi_i^{+}}{\varphi_{i-2s}^{+}} \frac{l(2s,2s)}{\varphi_{2s}} (-p^{-i})^{s} \right).$$

We now prove the following identity by induction on j:

(5.3)
$$\sum_{s=0}^{j} \frac{\varphi_{2j}^{+}}{\varphi_{2j-2s}^{+}} \frac{l(2s,2s)}{\varphi_{2s}} z^{s} = \prod_{s=1}^{j} (1+p^{2s}z)$$

For j = 1, both sides of (5.3) equal to $1 + p^2 z$. Assuming (5.3) for j - 1, we have

(5.4)
$$\Pi_{s=1}^{j}(1+p^{2s}z) = (\Pi_{s=1}^{j-1}(1+p^{2s}z))(1+p^{2j}z)$$

$$= \left(\sum_{s=0}^{j-1} \frac{\varphi_{2j-2}^{+}}{\varphi_{2j-2-2s}^{+}} \frac{l(2s,2s)}{\varphi_{2s}}z^{s}\right)(1+p^{2j}z).$$

We now compare the coefficients of (5.3) and (5.4). For s=0, both coefficients are 1. For s=j,

$$\left(\frac{\varphi_{2j-2}^{+}}{\varphi_{0}^{+}} \frac{l(2j-2,2j-s)}{\varphi_{2j-2}} p^{2i}\right) \left(\frac{\varphi_{2j}^{+}}{\varphi_{0}^{+}} \frac{l(2j,2j)}{\varphi_{2j}}\right)^{-1}$$

$$= \frac{1}{p^{2j}-1} \frac{(p^{2j-1}-1)(p^{2j}-1)}{(p^{2j-1}-1)p^{2j}} p^{2j} = 1.$$

For $1 \le s \le j-1$,

$$\begin{split} &\left(\frac{\varphi_{2j-2}^{+}}{\varphi_{2j-2-2s}^{+}} \frac{l(2s,2s)}{\varphi_{2s}} + \frac{\varphi_{2j-2}^{+}}{\varphi_{2j-2s}^{+}} \frac{l(2s-2,2s-2)}{\varphi_{2s-2}} p^{2j} \right) \left(\frac{\varphi_{2j}^{+}}{\varphi_{2j-2s}^{+}} \frac{l(2s,2s)}{\varphi_{2s}}\right)^{-1} \\ &= \frac{\varphi_{2j-2}^{+}}{\varphi_{2j}^{+}} \cdot \frac{\varphi_{2j-2s}^{+}}{\varphi_{2j-2-2s}^{+}} + \frac{\varphi_{2j-2}^{+}}{\varphi_{2j}^{+}} \cdot \frac{\varphi_{2s}l(2s-2,2s-2)}{\varphi_{2s-2}l(2s,2s)} p^{2j} \\ &= \frac{p^{2j-2s}-1}{p^{2j}-1} + \frac{1}{p^{2j}-1} \frac{(p^{2s}-1)(p^{2s-1}-1)}{(p^{2s-1}-1)p^{2s}} p^{2j} \\ &= \frac{p^{2j-2s}-1+(p^{2s}-1)p^{2j-2s}}{p^{2j-1}} = 1 \end{split}$$

So we can conclude that the identity (5.3) holds. Substituting $j = \frac{i}{2}$ and $z = -p^{-i}$ in (5.3), we have $c_i = p^{\frac{i}{2}(\frac{i}{2}-1)}\varphi_i^-\Pi_{s=1}^{\frac{i}{2}}(1+p^{2s}(-p^{-i})) = 0$. Hence $c_i = 0$ for all even $i \geq 2$. This completes the proof.

Note that this correspondence between $\mathbf{T}^n \in \mathbf{E}_0^n$ and $t^2 Z_0^n \in \mathcal{D}^n$ can be extended to that between $T^n \in \mathcal{E}_0^n(q) = \mathcal{L}_0^n(q,T)$ and $t^2 Z_0^n \in \mathcal{D}^n$, where

(5.5)
$$T^{n} = T_{p}^{n} = \sum_{s=0}^{\left[\frac{n-1}{2}\right]} (-1)^{s} p^{-s(s+1)} \left(l(2s,2s) \cdot T(K_{2s}^{n}) - l(2s+1,2s+1) \cdot T(K_{2s+1}^{n}) \right) + \varepsilon(n)(-1)^{\frac{n}{2}} p^{-\frac{n}{2}(\frac{n}{2}+1)} l(n,n) \cdot T(K_{p}^{n}) \in \mathcal{L}_{0}^{n}(q,T).$$

Note that we have for n = 1

(5.6)
$$T^{1} = T(K_{0}^{1}) - (p-1)T(K_{1}^{1}) \in \mathcal{L}_{0}^{1}(q,T).$$

This is a little bit different from the classical Hecke operator

(5.7)
$$T^{1}(p^{2}) = T(K_{0}^{1}) + T(K_{1}^{1}) \in \mathcal{L}_{0}^{1}(q, T).$$

As is well-known,

$$(5.8)$$

$$T^{1}(p^{2}) = \left(\Gamma_{0}^{n}(q) \begin{pmatrix} 1 & 0 \\ 0 & p^{2} \end{pmatrix} \Gamma_{0}^{n}(q) \right) + \left(\Gamma_{0}^{n}(q) \begin{pmatrix} p & 0 \\ 0 & p \end{pmatrix} \Gamma_{0}^{n}(q) \right)$$

$$= \sum_{\substack{ad=p^{2} \\ 0 \leq b \leq d}} \left(\Gamma_{0}^{n}(q) \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \right).$$

One can easily check that $\psi_1 \circ \beta^1(T^1) = x_0^2(1+x_1^2)$ and $\psi_1 \circ \beta^1(T^1(p^2)) = x_0^2(1+x_1+x_1^2)$. This difference appears in the eigenvalues for a simultaneous eigenform in the spaces $\mathcal{M}_k^1(q,\chi)$ of the classical modular forms of weight k, level q, with respect to a Dirichlet character χ modulo q. Indeed, if we let $f \in \mathcal{M}_k^1(q,\chi)$ be a simultaneous eigenform under the Hecke operators in $\mathcal{L}_0^n(q,T)$, then the eigenvalue of f for T^1 is $1 + (p^{k-1}\chi(p))^2$ while that for $T^1(p^2)$ is $1 + p^{k-1}\chi(p) + (p^{k-1}\chi(p))^2$. See [Se].

References

- [A1] A. N. Andrianov, The Multiplicative Arithmetic of Siegel Modular Forms, Russian Math. Surveys, 34(1979), 75-148.
- [A2] _____, Quadratic Forms and Hecke Operators, GMW 286, Springer-Verlag, 1987.
- [A3] _____, Action of Hecke Operators T(p) on Theta-Series, Math. Ann. 247 (1980), 245-254.
- [C] L. Carlitz, Representations by Quadratic Forms on a Finite Field, Duke Math. J. 21(1954), 123-137.
- [M] H. Maass, Siegel's Modular Forms and Dirichlet Series, LNM 216, Springer-Verlag, 1971.
- [Sa] I. Satake, Theory of Spherical Function on Reductive Algebraic Groups over p-adic Fields, IHES Publ. Math. 18(1963), 1-69.
- [Sc] R. Schulze-Pillot, Thetariehen positiv definiten quadratische Formen, Inv. Math. 75(1984), 283-299.
- [Se] J.P. Serre, A Course in Arithmetic, Springer-Verlag, 1973.
- [Sh] G. Shimura, Arithmetic of Alternating Forms and Quaternion Hermitian Forms, J. Math. Soc. Japan 15(1963), 33-65.
- [Z1] V. G. Zhuravlev, Hecke Rings for a Covering of the Symplectic Groups, Math. USSR Sbornik 49(1984), 379-399.

Jae-Myung Chung and Myung-Hwan Kim

[Z2]	 ,	Expansi	ions of Th	eta-Trans	s formations	of Sieg	iel Modular	Forms	of Half
	Integral	Weight	and their	Analytic	Properties,	Math.	USSR Sbo	rnik 51	(1985),
	169-190								

DEPARTMENT OF MATHEMATICS, SEOUL NATIONAL UNIVERSITY, SEOUL 151-742, KOREA