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THE PERIOD AND THE LINEAR COMPLEXITY
OF CERTAIN LINEAR RECURRING
SEQUENCES IN THE FINITE FIELD GF(q)

SEUNG AHN PARK

1. Introduction
Let GF(q) be a finite field with ¢ elements, where ¢ is a prime power.
A sequence
850,815 82, 551, St41," "
of elements of GF(q) is denoted by {s;}. The set GF(q)* of all se-

quences in GF(q) forms an algebra over GF(q) under the addition,
multiplication and the scalar multiplication defined as follows:

{ue} + {vi} = {uetve},
{ucH{v} = {wwe},
fuc) = feur)
If there exists a positive integer r such that sy, = s; for all t >0,
then {s;} is said to be periodic, and the smallest positive integer r
such that sy, = s, for all ¢t > 0 is called the period of the sequence.

Let co,c1, - ,cne1 be given elements of the finite field GF(q). A
sequence {s;} in GF(q) satisfying the linear recurrence relation

n-—1

3t+n:zci3t+i (t=0,12,)

=1
is called an n-th homogeneous linear recurring sequence in GF(q) and
the polynomial

fz)=—co — c1z —cga? — - —cp_qe™ 1 4 2"

Received March 23, 1991.
This reaserch has been supported by Korea Research Foundation.



Seung Ahn Park

is called the characteristic polynomial of {s¢}. And for any monic poly-
nomial

g(z) = —ap — ayx — agz? — - —ap_1z" 4 2"

over GF(q) of degree n > 1, a sequence {s;} in GF(q) satisfying

" n—1

St+n ZZG,‘SH.,' (t=0,1,2,-~-)

1=0

is said to be generated by g(z). The set of all homogeneous linear
recurring sequence in GF(q), generated by g(z) forms a subspace of
the vector space GF(q)”, which is called the solution space of g(z) and
is denoted by S(g(z)).

Let {s;} be a homogeneous linear recurring sequence in GF(g). Then
there exists a unique monic polynomial h(z) € GF(q)(z], degh(z)>1,
such that for any monic polynomal g(z) € GF(q)[z] we have

{s¢} € S(g(z)) if and only if h(z)lg(z).

The polynomal h(z) is called the minimum polynomial of {s¢} and the
degree of h(z) is called the linear complexity or linear equivalence of

{s¢}.

In this paper we will prove some theorems on the period and the
linear complexity of certain sequences in GF(g) which are generated by
combining two sequences in a reasonable way. In fact these theorems
are generalizations of the main result in [1}.

A sequence of elements of GF(2) is called a binary sequence. In
recent years considerable interest has been shown in the generation of
binary sequences which have good properties. Such binary sequences
play an important role in a stream cipher system.

The terminology and the notation in this paper are standard, and
they are taken from [3]. Throughout this paper, GF(q) denotes the
finite field with ¢ elements, where ¢ is a prime power.
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2. Preliminaries

In this section we will state some propositions which are useful in
proving theorems in section 3. The proofs of these propositions will be
omitted and they can be found in [3] and [6].

Let GF(q) be the finite field with ¢ elements, where ¢ is a prime
power, and let f(z) € GF(qg)(z] be a polynomial of degree n > 1
with f(0)#0. Then there exits a positive integer e < ¢"—1 such that
f(2)|(z¢ — 1) in GF(g)[z]. The smallest positive integer e such that
f(z)|(z¢ — 1) in GF(q)[z] is called the order of f(z) and is denoted by
ord f(z). If f(z) is an irreducible polynomial over GF(q) of degree n,
then the order of f(z) divides ¢ — 1.

The multiplicative group GF(q)* = GF(q) — {0} is cyclic. A gener-
ator of the cyclic group GF(q)* is called a primitive element of GF(q).
A polynomial f(2) € GF(q)[z] of degree n > 1 is called a primitive
polynomial if it is the minimum polynomial over GF(q) of a primitive
element of GF(¢™). A monic polynomial f(z) € GF(q)[z] of degree n
1s a primitive polynomial over GF(q) if and only if it is irreducible over
GF(q) and ord f(z) = ¢" — 1.

Let {s¢} be any sequence in GF(q) and let d be a positive integer.
A sequence {u;} such that

Ut = St4d (t:071327)

is called the translate of {s;} by d, and it is denoted by 4{s;}. And a
sequence {v;} such that

V= 841 (t=0,1,2,---)

is called the decimation of {s;} by d, and it is denoted by {s,}(®.

PROPOSITION 2.1. Let {s,;} be a homogeneous linear recurring se-
quence genereted by a polynomial f(z) € GF(q)[z] of degree n > 1.
Then the period of the sequence divides ord f(z) and so it is < ¢™ — 1.

If h(z) € GF(q)[z] is the minimum polynomial of {s:}, then the
period of the sequence is equal to ord h(z).
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PROPOSITION 2.2. Let f(z) be a primitive polynomial over GF(q)
of degree n > 1. Then any nonzero sequence in GF(q) generated by
f(z) is of period ¢ — 1.

Such a sequence is called a mazimal period sequence in GF(g).

PROPOSITION 2.3. Let f(z) € GF(q) be a primitive polynomial of
degree n > 1 and let {s¢} be a nonzero sequence generated by f(z).
Then the sequence {s;} in GF(q) is a maximal period sequence of period
¢" — 1 and

S(f(2)) = {i{s} 10 < < ¢"—-2} U {{0}}.

PROPOSITION 2.4. Let f(x) € GF(g)[z] be an irreducible polyno-
mial of degree n > 1 such that o € GF(q") is a root of f(zx), and let d
be a positive integer. If h(z) is an irreducible polynomial over GF(q)
of degree n with h(a?) = 0, then

S(h(z)) = { {s:}'D | {s:} € S(f(x)}.
PROPOSITION 2.5. Let

fl(‘r)v f2($)’ ) f"(‘r)

be all the distinct monic irreducible polynomials in GF(q)[z] of degree
n and order N, and let M > 2 be an integer which satisfies the following
two conditions:

(i) All prime factors of M divide N but not (¢" — 1)/N.
(i) ¢" =1 (mod4) if M =0 (mod 4).
Then
fia™), fo(e™), o fr(@™)

are all the distinct monic irreducible polynomials in GF(q)[z| of degree
nM and order N M.
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3. The period and the linear complexity of certain sequences

Let GF(q) be the finite field with ¢ elements, where ¢ is a prime
power. In this section we will study the period and the linear complexity
of certain sequences which are generated by combining two maximal
period sequences in GF(q).

Let f(z) and g(x) be primitive polynomials over GF(q) of degree m
and n respectively, where m > 1 and n > 1. Let k be an integer such
that

1<k<m

and let 21,72, -+ ,74—1 be integers such that
0< iy < <oor <y <

And let Z, = {0,1,2,--- , g—1} be the set of all nonnegative integers
less than ¢, and let
7:GF(q) — Zy, 7(a) = d’

be any injective map such that 7(0) = 0.

Let {a;} and {b;} be nonzero sequences in GF(q) generated by f(z)
and g(x), respectively. Thus {a;} and {b} are maximal period se-
quences of period ¢™ — 1 and ¢™ — 1, respectively. For each vector

(ataat+i1a"' aai"rik_x)eGF(Q)k (f:()’l’?’)
let R; be an integer given by
k—2+"'+alt+ik_1 (t:0,1,2,---)

and let {u;} be a sequence in GF(q) such that

1 k-1 !
R, = ayq + a9

uy = by, (t=0,1,2,---)
where
t
di=t+» R (t=0,1,2,--)

From now on we will study the period and the linear complexity
of the sequence {u;} in GF(q). The notation introduced in the above
sentences will keep its meaning throughout this section.
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THEOREM 3.1. Let

M-1
M=g"-1, N=¢"-1, K=M+ ) R

t=0

Then the following hold.
m( k my _k
(1) Keme Ll - _¢"@+1)

2 2
(2) ({u )™ = (0 {bH" (=01, , M -1

Proof. (1) Since {a:} is a maximal period sequence of period M, we
have :

{(ar,a41, - a4m1) |0 <t < M -1} U{(0,---,0)} = GF(g)™
by Proposition 2.3. Hence
{(atvaH"ii" T aaH-ik_l) l 0 <t S M_l} = GF(q)k

and every nonzero vector in GF(g)* occurs exactly ¢™~* times while
t varies from 0 to M — 1. Since

7:GF(q) — Z,. T(a)=d’
is injective map such that 7(0) = 0, it follows that

{(a’lha;ﬁ-il?.” 7a,t+ik_|)|0 Stg M— 1} - qu

and every nonzero vector in Zg occurs exactly g™ % times while ¢
varies from 0 to M — 1. Therefore, we have

M -1 M-1
Z R = Z a,‘qk—l +alt+i1qk_—2 + - 'alt+ik-1
t=0 t=0
k
. m -1
:qm—k{1+2+._.+(qk__1)}=q (q2 )
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and
K- M+§1Rt o1 qm(qz"—l) _ q"’(q2’°+1) 1
(2) Since {a;} is a periodic sequence of period M, we have
Riijm = R; (0<i<M-1, j=0,1,2,---)
and so
i+ M M-1
div;mMm=1+jM+ ZRt~—]M+] ZRt+z+ZRt
=jK +d; - (OSzSMilo, J =0,1,t2—,0---)
Therefore, we have
wipim =birya;  (0<i<M—1,7=0,1,2--)

and so (i{u})™ = (¢.{6})") (i=0,1,--- , M-1).
THEOREM 3.2. Let

(" ~1)
2
Let 8 be a primitive element of GF(¢™) such that ¢(3) = 0 and let h(z)
be the minimum polynomial of 8% over GF(q).
If (N,K) =1, then the following hold.
(1) The polynomial h(x) is a primitive polynomial over GF(q) such
that degh(z) = n, ordh(z) = N, and h(z) = [, Yz — Lt ).
(2) For eachj =0,1,2, -, the sequence (;{b:})'¥) in GF(q) has
h(z) as its miminum polynomial and it is of period N.

(3) The sequence {u¢} in GF(q) is generated by the polynomial
h(zM) over GF(q), and

M=¢"-1, N=¢"-1, K=M+-

n-—1 )
h(zM) = H(:rM Y deg h(z™) = nM.
1=0
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Proof. By assumption g(z) is a primitive polynomial over GF(q) of
degree n, and so there exists a primitive element g € GF(¢") such that

9(8) = 0.

(1) We have GF(¢™)* = (B) and |GF(¢")*| = ¢"—1 = N.Since
(N,K) =1 it follows that GF(¢™)* = (8¥). Therefore, ¥ is a primi-
tive element of GF(g¢") and the order of h(z) is N. Hence the assertion
(1) holds.

(2) Since g(z) is a primitive polynomial over GF(g) with g(8) =0
and {b¢} is a nonzero sequence generated by g(z), we have

S(g(x)) = {j{b:} 10 <j < N-1} U {{0}}
by Proposition 2.3. Hence we have
S(h(x)) = {(;{b:)™ [0 <5 < N-1} U {{0}}
by Proposition 2.4. Therefore, each sequence (;{b¢})¥) has h(z) as its
miminum polynomial and it is of period N.
Thus the assertion (2) holds.

(3) Arrange elements of {u,} as follows :

Uo UM U2M
U1 UM+1 U2M+1

UM-1 UM+M-1 U2M+M-1

In this way we obtain M sequences
{ud™, (fae DM, - (rofu D
in GF(q).On the other hand, we have
({e )™ = (afb)™ (=0,1,---,M-1)

by Theorem 3.1. Hence each (;{us})* has h(z) as its minimum poly-
nomial and (;{u,})™ € S(h(z)) by the assertion (2).
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Suppose that
h(z) = —co —c1z — -+ — ea12" 7! + 2" € GF(g)[z).
Then, for each ¢ = 0,1,--- , M — 1, we have

n—1
UM(t4n)+i = Z CiuM(t+j)+i>  (£=0,1,2,---)
=0
In particular we have

n—1

Ut+nM = chut-f-jM, (t:Oalazv)
i=0

and so {u;} is generated by the polynomial
MaM) = —cg —cyaM — - 1P DM | gnM ¢ GF(q)[z].
Hence the assertion (3) holds.

THEOREM 3.3. Assume that the following three conditions hold.
m _k
(i) (q"—l, gm—1+ =l ””) =1.
(i1) ¢" =1 (mod 4) if¢g™ =1 (mod 4)
(iii) All prime factors of ¢™—1 divide ¢"—1.
Then the sequence {u¢} in GF(q) is of period (¢" — 1)(¢™ — 1) and

linear complexity n(q™ — 1).

Proof. We will use the notation in Theorem 3.2. Note that

m¢ k
M=g¢"—1, N=g¢"-1, K=M+1 L =2 (("2*1)

The condition (i) implies that (N, K) = 1. Hence {u;} is generated
by h(zM) € GF(q)[z], by Theorem 3.2.

On the other hand, since the conditions (ii) and (iii) hold, h(z™)
is a monic irreducible polynomial in GF(q)[z] of degree nM and order
NM by Proposition 2.5.

Hence h(z™) is the minimum polynomial of {u}, and so {u} is of
period (¢" — 1)(¢™ — 1) and linear complexity n(¢g™ — 1).
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In the case when ¢ = 2 Theorem 3.3 can be rewritten as the following
corollary, which is the main theorem in [1].

COROLLARY 3.4. Assume that ¢ = 2 and the following two condi-
tions hold.
(i) (271, 2m—14-2m"}(2k_1)) = 1.
(ii) All prime factors of 2™ — 1 divide 2™ — 1.
Then the sequence {u,} in GF(2) is of period {2"—1)(2™—1) and linear
complexity n(2™ — 1).

Now comnsider the case when m = n in Theorem 3.3.
In Theorem 3.3, if m = n then the conditions (ii) and (iii) are satis-
fied automatically, and the condition (i) is equivalent to the condition

(*) (q"—l, q—n%—kil> =1.

If ¢ is even, then the condition (*) is equivalent to the condition
(¢" = 1,¢* —1) = 1. Since ¢‘™" — 1 is a common divisor of ¢" — 1 and
¢* — 1, the condition (¢" — 1,¢* —1) = 1 holds if and only if ¢ = 2 and
(n, k)= 1.

If ¢ is odd, then (*) is equivalent to the condition

k__
(+%) (q"—l, < 1) _1

Now assume that ¢ is odd and that the condition (*) holds. Then
¢"® — 1 is divided by 2, and so ¢ = 3 and (n, k) = 1. And k is odd if
and only if (3% —1)/2 is odd. Therefore, if q is odd and the condition
(*+) holds then ¢ = 3, (n,k) =1 and k is odd.

Conversely, assume that ¢ = 3,(n,k) = 1 and k is odd. And suppose
that there exists an odd prime p which divides both 3" —1 and (3¥—1)/2.
Then p is a common divisor of 3" — 1 and 3*¥ — 1 and so

3"=1 (modp) and 3*=1 (mod p).

98



The period and the linear complexity of certain linear recurring sequences

Let r be the order of 3 modulo p. Then the above congruences yield
that r|(n, k) and so » = 1. This implies that 3 = 1 (mod p) and p = 2,
which is a contradiction. Hence if ¢ = 3, (n, k) = 1 and k is odd, then
the condition (**) holds.

Therefore, we obtain the following corollary.

COROLLARY 3.5. Assume that m = n. Then the following hold.
(1) If ¢ =2 and (n,k) = 1, then the sequence {u;} in GF(2) is of
period (2"—1)? and linear complexity n(2"—1).
(2) If ¢ = 3, (n,k)=1 and k is odd, then the sequence {u;} in
GF(3) is of period (3"—1)* and linear complexity n(3"—1).
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