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THE ASYMPTOTIC BEHAVIOR OF NON-LINEAR
DISSIPATIVE HYPERBOLIC EQUATIONS

WAN SE KM

1. Introduction

Let R be the set of all real numbers, tp > 0in R and Q = [t0,00[ %[0, 7].
Let C%(92) be the space of all functions u : & —» R which have bounded
continuous partial derivatives up to order 2 with respect to both vari-
ables on Q.

In this note, we will investigate the asymptotic stability of global
solutions of non-linear dissipative hyperbolic equations of the form

(1.1) Bug + gy — ugr +g(u) =0in Q

where 3(> 0) € R,u = u(t,z) and g : @ — R is continuous.

A global solution of the problem on § for (1.1) will be u € C%(Q)
such that u satisfies (1.1) on § and satisfies Dirichlet boundary condi-
tion

u(t,0) = u(t,m) =0, t>t,.

In [7], the author established the existence of o weak solution to the
periodic-Dirichlet boundary value problem for the equations of the form

Bus + Uy — gy + g(u) = h(t, r)

with a generalized sign condition and superlinear growth in ¢. Our
main result is related to the above problem. For stability result, we
assume h(t,z) = 0 and it is also another interesting question whether
we could establish the asymptotic stability for the equations with non-
zero forcing term h(t,z) with appropriate conditions.
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There have been a few authors dealing the asymptotic behavior of
this type of hyperbolic equations, for example, Ficken and Fleishman
(2], Haraux [3] and Rabinowitz [8]. In particular, our work is related to
Rabinowitz’s work in [8]. Rabinowitz treated the asymptotic stability of
global solutions for the equaions of the form (1.1) with ¢ = e F(¢t, z, u).
He discussed the asymptotic stability of any global solutions satisfying
Dirichlet condition in z but his result is valied for sufficiently small ¢. In
our main result, our non-linear term is independent of such a parameter
and we will prove that any global solution satisfying Dirichlet condition
in  to the above equation (1.1) converges to zero exponentially. We
assume only

(Hy) ug(u) >0 forallu € R and

(H2) G(u) < ug(u) forallueR
where G(u) = [" g(s)ds.

The assumption (H;) is nothing but a sign condition and the assump-
tion (H2) contains both sublinear and superlinear growth conditions
in g and those two conditions (H;) and (Hy) play important parts in
driving an energy inequality. For this result, we will assume some more
regularity of solutions than we do for our existence result in [7].

Our proof is based on the so called “energy method” and the main
key in our proof is to set up an energy function as a function of ¢ and
an appropriate parameter € and driving a simple differential inequality
by using Dirichlet condition in z.

2. Main Result

THEOREM. Assume g satisfies (H,) and (H3) and also assume g(0) =
0. If v € C4(Q) is any global solution to (1.1), then v(t,z) — 0 uni-
formly as t — +oo and in this case v(t, z) decays exponentially.

Proof. Since g(0) = 0,u = 0 is a solution of (1.1). Let v(¢,z) be any

global solution and consider an energy function defined by

1 77 . T
w(t) = 3 / [vf + 02 4+ efv? + 2evve] dz + / G(v)dx
0 Jo
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where £ > 0.
Differentiate w(t) with respect to ¢, then, we have,

d m
(—ﬁw(t) = / [vever + vevyy + cfrvvg + svf + cvve + g(v)ve) da
0

Since v4(t,0) = v,(¢, 7) = 0, we have,

" "
/ VUi dT = —~/ VU da.
0 0

Therefore

d his T ™
gt-w(t) = / ve[vee — vze + g(v)] dz + a/ v? d -+—/ ev[fvy + vy dz.
0 0

0

Since v(t, z) satisfies equation (1.1),
d ) T 9 T ™
—w(t) = —(8 —¢) vidr + ¢ Vg dr — € vg(v)de.
dt 0 0 0

Using the Dirichlet boundary condition, we get

e T
5/ VW dr = —5/ vg dr.
0 0

Hence

ditw(t):-(ﬂ—s)/orvtzd:c——e/(jvzdm—e/;ﬂvg('v)dcr

S [(ﬂ~s)/0"vt2dx+s/(;"v‘zdz+€/vag(v)de.

Since ug(u) >0 for all u,

d
7w(t) <0 forall0<e<g.
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Furthermore

—%w(t)z(B——E)/ﬂvfdx+6/"vzdm+5/ﬂvg(v)dx
0 0 0
™ ,2 T, 2 ™
> min{2(8 —¢),¢e} [/ % dz +/ v—; dz +/ vg(v) d:r]
0 0 0
T2 w2 ™
> min{2(f — ¢),e} [/(; % dz +/(; v_; dz + A G(v) d:r]

since G(u) < ug(u) for all u € R.
Again, by the boundary condition, we have

me)ziéwvﬂnsﬁk.
Hence
vl < [ ool ds
< [Tt o)l

™ 1/2
< xl/? [/ lve(t, )| dz] .
0

Thus, we have
w@@ﬁgn/|wmmﬁm.
1}

Therefore, we obtain

/ lo(t, z)[* dz < 7r2/ lvz(t, z)|* dz, or
0 0

™ k.
/ v dz < 7r2/ v2dz.
0 0
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% / [v? 4 v2 4 eBv? + 2evve] dx + / G(v)dv

0 0

1 L , us

> / [v? 4+ v2 + efn?? 4 ev? + ev?]dz + / G(v)dz
0 0

IN

1 /" ™
< 5/ (v + 02 +efr?ol 4 en?ol + evi]da + / G(v)dz
0 0

m 2 T2 T
=(1+6)/ -l—)-t—dx+(1+€7r2+5ﬂ7rz)/ z‘Edac%—'/ G(v)dx
o 2 o 2 0

1rU2 1r,U2 K
= (14 en? 4+ efn?) [/ -—t—d:c+/ —I-da:+/ G(v)d:r}.
o 2 o 2 0

Hence

T2 T 2 T
V] vz w(t)
—d = >

A 5 ;1:-|~/(; 2dx+A G(U)dx‘l-%eﬂ—}—eﬂwz
Therefore J {23 o)
min —€), €
—— > . .
dtw(t) = 1+4en?4efn? w(t)
min{2(5 — ¢),¢}
14 en? 4 efn?

Take 0 < ¢ < f such that gg = > 0, then —%w(t) >
eow(t) or

(1.3) -(j—tw(t) < —gow(t).

Multiply e®°* on the both side of (1.3), to get

d
aw(t)e”t + gow(t)e®t < 0.

d . .
Hence —Cﬁ[w(t)ee"’] < 0 and thus w(t)e®! is monotone decreasing with

respect to 1.
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On the other hand, since G(u) = [’ g(s)ds > 0. we have

w(t) = -;— /0 [v? 4+ 02 4 efv? + 2evvy]dz + /(; G(v)dz
1 ks n
=5 / [(ve + ev)? + (e — e2)? +vi)de + / G(v)dx
0 0
> 0.

Therefore, 0 < w(t)e®! < w(tg)e*?, or w(t) < w(tg)ee"("’”‘)
. 1/2
Now, since |v(t,z)| < 7!/2 [fo lve(t, )| dx] ,

™ 1/2
sup Ju(t,z)| < /2 [/ lve(t, )| dr] .
0

o<z
Since w(t) > 1 [ v?dx,

sup Jo(t,z)| < 7'/%[2w(t)]'/?
0<e<m

< 7,rl/2 {Qw(to)eeo(to—ti]l/Q

Hence, as t — 400, sup |v(t,x)| — 0.
0<z<m

This completes our proof.
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