FUZZY AND LEVEL SUBALGEBRAS OF BCK(BCI)-ALGEBRAS

S. M. HONG AND Y. B. JUN

The concept of fuzzy sets was introduced by Zadeh in [6]. Das [1] and Rosenfeld [5] applied it to the fundamental theory of groups. Ougen [4] applied the concept of fuzzy set to BCK-algebra, and he got some results. In this paper, we study fuzzy subalgebras of a BCK(BCI)algebra. We also define level subalgebra and study their properties.

DEFINITION 1. A BCI-algebra is a non-empty set X with a binary operation * and a constant 0 satisfying the axioms:

- (1) $\{(x * y) * (x * z)\} * (z * y) = 0,$ (2) $\{x * (x * y)\} * y = 0,$ (3) x * x = 0,
- (4) x * y = 0 and y * x = 0 imply that x = y,
- (5) x * 0 = 0 implies that x = 0,

for all $x, y, z \in X$. If (5) is replaced by 0 * x = 0, then the algebra is called a *BCK*-algebra.

A non-empty subset A of a BCK(BCI)-algebra X is called a subalgebra of X if $x, y \in A$ implies $x * y \in A$.

DEFINITION 2. ([1]). Let X be a set. A fuzzy set in X is a function $\mu: X \to [0, 1]$.

DEFINITION 3. ([4], [5]). Let X be a BCK(BCI)-algebra. A fuzzy set μ in X is called a fuzzy subalgebra of X if, for all $x, y \in X$,

$$\mu(x * y) \ge \min(\mu(x), \mu(y)).$$

LEMMA 4. ([4]). Let X be a BCK(BCI)-algebra. If $\mu : X \to [0,1]$ is a fuzzy subalgebra of X, then $\mu(x) \leq \mu(0)$ for all $x \in X$.

Received January 9, 1992.

THEOREM 5. Let μ be a fuzzy set in a BCK(BCI)-algebra X. If μ is a fuzzy subalgebra of X, then the set

$$A := \{x \in X : \mu(x) = \mu(0)\}$$

is a subalgebra of X.

Proof. Let $x, y \in A$. Then $\mu(x) = \mu(0) = \mu(y)$. Since μ is a fuzzy subalgebra, it follows that

$$\mu(x * y) \geq \min(\mu(x), \mu(y)) = \mu(0).$$

On the other hand, by Lemma 4, we have $\mu(x * y) \leq \mu(0)$. Hence $\mu(x * y) = \mu(0)$, and $x * y \in A$.

THEOREM 6. The intersection of any set of fuzzy subalgebras of a BCK(BCI)-algebra is a fuzzy subalgebra.

Proof. Let $\{\mu_i\}$ be a family of fuzzy subalgebras of a BCK(BCI)-algebra X. Then, for any $x, y \in X$,

$$(\cap \mu_i)(x * y) = \inf(\mu_i(x * y))$$

$$\geq \inf(\min(\mu_i(x), \mu_i(y)))$$

$$= \min(\inf \mu_i(x), \inf \mu_i(y))$$

$$= \min((\cap \mu_i)(x), (\cap \mu_i)(y)),$$

which completes the proof.

REMARK 7. The union of any set of fuzzy subalgebras need not be a fuzzy subalgebra. Indeed, if μ and ν are fuzzy subalgebras of BCK(BCI)-algebra X such that $\mu(x) > \mu(y) > \nu(x) > \nu(y)$ for all $x, y \in X$, then the inequality

$$(\mu \cup \nu)(x * y) \ge \min((\mu \cup \nu)(x), (\mu \cup \nu)(y))$$

does not hold.

186

THEOREM 8. Let X be a BCK(BCI)-algebra, A a subset of X, and let μ be a fuzzy set in X such that μ is into $\{0,1\}$, so that μ is the characteristic function of A. Then μ is a fuzzy subalgebra of X if and only if A is a subalgebra of X.

Proof. Assume that μ is a fuzzy subalgebra of X. Since μ is the characteristic function of A, therefore $\mu(x) = 1 = \mu(y)$ for all $x, y \in A$. Then

$$\mu(x * y) \geq \min(\mu(x), \mu(y)) = 1,$$

and hence $\mu(x * y) = 1$. This implies that $x * y \in A$, and that A is a subalgebra of X. Conversely, suppose that A is a subalgebra of X. Let $x, y \in X$. If $x, y \in A$, then $\mu(x) = 1 = \mu(y)$ and $x * y \in A$. Thus $\mu(x * y) = 1 = \min(\mu(x), \mu(y))$. If $x, y \in X - A$, then $\mu(x) = 0 = \mu(y)$. Thus $\mu(x * y) \ge 0 = \min(\mu(x), \mu(y))$. If $x \in A$ and $y \in X - A$, then $\mu(x) = 1$ and $\mu(y) = 0$. Hence $\mu(x * y) \ge 0 = \min(\mu(x), \mu(y))$. Similarly, for $x \in X - A$ and $y \in A$, we have $\mu(x * y) \ge \min(\mu(x), \mu(y))$. This completes the proof.

DEFINITION 9. Let X and X' be BCK(BCI)-algebras. A mapping $f: X \to X'$ is called a homomorphism if, for any $x, y \in X$,

$$f(x * y) = f(x) * f(y).$$

DEFINITION 10. ([5]). Let f be a mapping defined on a set X. If μ is a fuzzy set in X, then the fuzzy set ν in f(X) defined by

$$\nu(y) = \sup_{x \in f^{-1}(y)} \mu(x)$$

for all $y \in f(X)$ is called the image of μ under f. Similarly, if ν is a fuzzy set in f(X), then the fuzzy set $\mu = \nu \circ f$ in X (i.e., the fuzzy set defined by $\mu(x) = \nu(f(x))$ for all $x \in X$) is called the preimage of ν under f.

THEOREM 11. An onto homomorphic preimage of a fuzzy subalgebra is a fuzzy subalgebra.

Proof. Let $f: X \to X'$ be an onto homomorphism of BCK(BCI)-algebras, ν a fuzzy subalgebra of X', and μ the preimage of ν under f.

Then

$$\mu(x * y) = \nu(f(x * y))$$

= $\nu(f(x) * f(y))$
 $\geq \min(\nu(f(x)), \nu(f(y)))$
= $\min(\mu(x), \mu(y))$

for all $x, y \in X$. Hence μ is a fuzzy subalgebra of X.

DEFINITION 12. ([5]). A fuzzy set μ in X has sup property if, for any subset $T \subset X$, there exists $t_0 \in T$ such that

$$\mu(t_0) = \sup_{t\in T} \mu(t).$$

THEOREM 13. An onto homomorphic image of a fuzzy subalgebra with sup property is a fuzzy subalgebra.

Proof. Let $f: X \to X'$ be an onto homomorphism of BCK(BCI)-algebras, μ a fuzzy subalgebra of X with sup property, and ν the image of μ under f. Given $x', y' \in X'$, let $x_0 \in f^{-1}(x'), y_0 \in f^{-1}(y')$ be such that

$$\mu(x_0) = \sup_{t \in f^{-1}(x')} \mu(t), \quad \mu(y_0) = \sup_{t \in f^{-1}(y')} \mu(t),$$

respectively. Then

$$\nu(x' * y') = \sup_{z \in f^{-1}(x' * y')} \mu(z)$$

$$\geq \min(\mu(x_0), \mu(y_0))$$

$$= \min(\sup_{t \in f^{-1}(x')} \mu(t), \sup_{t \in f^{-1}(y')} \mu(t))$$

$$= \min(\nu(x'), \nu(y')).$$

Hence ν is a fuzzy subalgebra of X'.

DEFINITION 14 ([1]). Let μ be a fuzzy set in a set X. For $t \in [0, 1]$, the set

$$\mu_t := \{x \in X : \mu(x) \ge t\}$$

is called a level subset of μ .

Note that μ_t is a subset of X in the ordinary sense. The terminology "level set" was introduced by Zadeh.

188

PROPOSITION 15 ([4]). Let X be a BCK(BCI)-algebra and μ a fuzzy subalgebra of X. Then the level subset μ_t , for $t \in [0,1]$, $t \leq \mu(0)$, is a subalgebra of X, where "0" in $\mu(0)$ is the constant of X.

PROPOSITION 16 ([4]). Let X be a BCK(BCI)-algebra and let μ be a fuzzy set in X such that μ_t is a subalgebra of X for all $t \in [0, 1]$, $t \leq \mu(0)$. Then μ is a fuzzy subalgebra of X.

DEFINITION 17. Let X be a BCK(BCI)-algebra and let μ be a fuzzy subalgebra of X. The subalgebras $\mu_t, t \in [0, 1]$ and $t \leq \mu(0)$, are called level subalgebras of μ .

Note that if X is a finite BCK(BCI)-algebra, then the number of subalgebras of X is finite whereas the number of level subalgebras of a fuzzy subalgebra μ appears to be infinite. But, since every level subalgebra is indeed a subalgebra of X, not all these level subalgebras are distinct. The next theorem characterises this aspect.

THEOREM 18. Let μ be a fuzzy subalgebra of a BCK(BCI)-algebra X. Two level subalgebras μ_{t_1}, μ_{t_2} (with $t_1 < t_2$) of μ are equal if and only if there is no $x \in X$ such that $t_1 < \mu(x) < t_2$.

Proof. Assume that $\mu_{t_1} = \mu_{t_2}$ for $t_1 < t_2$ and that there exists $x \in X$ such that $t_1 < \mu(x) < t_2$. Then $\mu_{t_2} \subset \mu_{t_1}$ and $\mu_{t_1} \neq \mu_{t_2}$, which contradicts the hypothesis. Conversely suppose that there is no $x \in X$ such that $t_1 < \mu(x) < t_2$. Since $t_1 < t_2$, we have $\mu_{t_2} \subset \mu_{t_1}$. Let $x \in \mu_{t_1}$. Then $\mu(x) \ge t_1$, and hence $\mu(x) \ge t_2$, because $\mu(x)$ does not lie between t_1 and t_2 . Hence $x \in \mu_{t_2}$, which implies that $\mu_{t_1} \subset \mu_{t_2}$. This completes the proof.

References

- 1. P. S. Das, Fuzzy groups and level subgroups, J. Math. Anal. Appl. 84 (1981), 264-269.
- 2. K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
- 3. K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math Japonica 23 (1978), 1-26.
- 4. X. Ougen, Fuzzy BCK-algebra, Math. Japonica 36 (1991), 935-942
- 5. A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517.
- 6. L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353.

S. M. Hong and Y. B. Jun

Department of Mathematics Gyeongsang National University Chinju 660-701, Korea

190