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UPPER AND LOWER BOUNDS FOR 
THE HAUSDORFF MEASURE IN 

RELATION TO THE PACKING MEASURE

Han Soo Kim and Young Mi Kim

1. Introduction
The size of sets of zero Lebesgue measure in Rn can be investigated 

by several distinct outer measures. The first of these to be extensively 

developed was Hausdorff measure and the second, namely Pa시ting mea­

sure, was ^ts±>Eshed by S. JJ^Tiyior and CTTricot in 1985^

Packing measure has been used by comparison with Hausdorff mea- 

su호e to study the regularity and rectifiability of sets. In [4], [5], they 

investigated the relationship between a general measure and its density 

behaviour. The density behaviour is very useful to know the geometric 

properties of a fractal set.

In this paper, we consider the case when the Hausdorff measure is 

not equal to the Packing measure and find a lower bound and an upper 

bound of Hausdorff measure with, respect to the Packing measure.

꼬he first part of this paper is generalization of inequalities in [6] and 

the second part of this paper considers the lower Hausdorff density of 

the generalized symmetric Cantor set.

2. Preliminaries
Let the function h : [0, oo) t R+ be continuous, increasing, 7i(0)= 

0, and satisfies a smoothness condition : There exists co > 0 such that 

h(2x) < cQh(x) for all 0 < a: < |.

In this paper, B(a:)r) is the ball with center x and radius r in Rn, 

jSn, E are subsets of Rn, and denotes the diameter of a set E.
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DEFINITION 1. (HausdorfF measure)

以(E) = inf{J2 h(\En\): E C gEn, |球| < 6} 

n

W(E)티i짜/4(E).
o—>0

DEFINITION 2. The premeasure of a bounded set E is defined as

P"(E)=聽[sup{»i(回％,匚)|) : xt e E, B(xi,rt) 

I

axe pairwise disjoint, 2rt <

outer measure, so by Method I of Mnnroe, the Padnug 

measure is defined by

护(E) = inf{£ Ph(En) : En are bounded , E C UnEn).

n

We note that『(E) < 伊(E) for a set E.

DEFINITION 3. Lower Hausdorff density function is defined by

『(E n B(x,r))

h(2r) 

and upper Packing density function is defined by

爲(c) = limsup必罕誓口

r-*-o h[2r)

3. Results
An upper bound for Hausdorff measure is given in 난first theorem.
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THEOREM 1.乓_{E卩} are disjoint,『-measurable sets such that 

E = Un-En, and if dp{x} > an > 1 for x E En, a.e.卩七 then 产”(E) < 
疝崎伊㈤). ~

Proof. Since dp{x) > an > 1 for z € En, a.e. “七 for each S > 0, 

there exist infinitely many r < f such that pft(EnnB(x,r)) > anh(2r). 

Let

v = {B(X, r) : a~lph(En n B(x, r)) > h(2r), x e -En).

Then V is a covering of En in the Vitali sense. Using the Vitali covering 

theorem for HausdorfF measure, /i^(En) < a~1p/l(£!n). Since En axe 

濟-measurable, //(E) < 辽伊(孩).

COROLLARY 2. dp(x) > a > 1, a.e. nh on E, then『(E) < 
a~1ph(E). _

By the foUowing theorenL, we obtain, a lower bound&r the HausdorfF 

measure.

THEOREM 3. Let {En} be pairwise disjoint} //h-measurable sets 

such that E = UnEn. If dp(x) < an for x E En, a.e. ph and

< oo, then c^1 £，吗牛”(玲)<『(E), where c0 such that 

h(2x) < coh(x) for allf) < x <

Proof. For each 6 > 0, let

E% = {x e En : ph(En n B(x, r)) < (an 一 e)7z(2r)

for all 0 < r < 5 for some e > 0}.

Let {7人} be a ^-cover of En and thus of &侖而 the ball B with center x 

and radius \Ut\ certainly contains Ut. Thus

护 (En A Ui) < ph(En DB)< a 耕⑵끼) < ［시)

so that

ph(En,6) < y^(ph(En n Ui) : Ut intersects」队,s} < coa”房(En). 

i

But En)s increases to En as 5 decreases to 0. Hence CQ1a~1ph(En') < 
『(En). Therefore甘云瞄受(孩) <『(E).

In theorem 3, if 丘(x) = xs, 나len cq becomes 25.
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COROLLARY 4. Ifdp(x) < a for X E Ey a.e. ph and aTp"(E) V oo, 

then* 布，厂侦"(E) < pA(E).

THEOREM 5. Let En f B, En be bounded and 0 V『(E) < oo. If 

lim fEn d = oo, then ph(E) = oo.-

Proof. Let Af be a positive integer. There exists a natural number 

N such that fE 矛七亍也”(g) > M for all n > AT. Then there exists 

a simple function s(x) = such that』臨 > s(x) for all

x E At and 产”(&) > M, where At are disjoint and a{ = s(z) if 

x E Ai，
Given € > 0, there exists a closed set Fi C Ai such that “"(氏)> 

“”(瓦)들“ i = 1,2, * • • , k. Let r0 be real number such that

ro V 了坛七(环1*=侦蜂】為)・ 
o

For any r < r0, put

Vt = {B(x,r) : |2r| < r0,x e Ft, h(2r) > aifih(At fl B(x,r))).

For each z, by the Vitali covering theorem, there exist disjoint 

such that

『(F, n (u為硏勺•，七)))> /(F,)—寿.

Then

kN, k Nt
££"(2rj) > 「1(3(勺,勺)))

i=l j=l t=l j=l

电 느)

k

>a沪2e > M — 2c.

t=i

So Ph(En) > M for all n > N. Therefore p"(E) = oo.
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DEFINITION 6. (Generalized Symmetric Cantor set) Let [0,1]= 

E° D Ei 3 … be a decreasing sequence of sets whidi have the fol­

lowing properties : for each closed interval Ik of length 이匕 of E& the 

intervals I^+1, - - - (m 2 2) contained in Ik are of equal length 

afc4-i and equally spaced by 6^+1- The generalized Symmetric Cantor 

set E is defined as E = An[U,where {I\} are the closed intervals 

of length an of En.

REMARK 7. Let E be a generalized Symmetric Cantor set. Then if 

the HausdorfF dimension of E is equal to the Packing dimension, then 

logm-n
5 = hm - ----- .

log an

REMARK 8. Let E be a generalized Symmetric Cantor set. Then 

s = lim ——if and only if lim =(丄)+ .
n—>oo log an n—>oo m

으

lim 으끄브 < lim《曲、 

丄二。an 18

it follows that lim 으끄土L < .
-- n. ―► oo an —

From now on, h(x) = 0 V s V 1, % = dp = dpy

and d； = d；. In fact, d^(x) < 2~s forxEE a.e.妒 if 0 V 卩戸(E) < oo 

and dp(x) > 1 for x E E a.e. ps if 0 < p허(E) < oo.

The following theorem shows that under certain conditions a con­

stant 7 < 2~s exists such that d/xs(x) < 7 for all x in the Generalized 

Symmetric Cantor set E. This is a generalization, of Theorem 3 [4].

THEOREM 9. Let E be a generalized Symmetric Cantor set. If the 

Hausdorff dimension of s is equal to the Packing dimensionf then

炊)<(|r for all x E E.
m — 1

-

— m

Proof. Since limn_^oo 으:土므 < (土)there exist infinitely 

many n such that 으프土모 v 0. Hence, for those same infinitely many 

(a‘너t., aQ,

如+1 

a卩

— rnctn-|-i〉 

(m - l)an

占1 -叫
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Therefore,讨％ V 芝*. Now, let x be any endpoint of E、and let bj 

be the length of the contiguous interval of E with one of the endpoints 

being x. 까exist infinitely many of the above (an+초,such 

that 6n+i + an+i < b3. Let r = an+x + 6n+1- Therefore,

n B(c)) (如+丄)，_쓰—'件으흐느
(2^ (2歸+1)8 =(히 M기 =丁丿

<當罕号)衍

2 1 — mp

Let a: be a limit point of E which is not an endpoint of E. Then x is 

contained 让i inSnitely many closed intervals of length (an4-i, an) given 

above with respect to the endpoints. Therefore r > &n+1 and

^s(EnB(x,r)) 1 m-1
―(2^一■ < 版)(匸诙)6 •

Letting n —* oo and 0 approaches (|)5,

或S) V (紀(~彳二丄)s for all zeE.

匕 — m
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