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UPPER AND LOWER BOUNDS FOR
THE HAUSDORFF MEASURE IN
RELATION TO THE PACKING MEASURE

HAN Soc KIM AND YOUNG M1 KM

1. Introduction

The size of sets of zero Lebesgue measure in R” can be investigated
by several distinct outer measures. The first of these to be extensively
developed was Hausdorff measure and the second, namely Packing mea-
sure, was estabhlshed by 5. J. Taylor and C. Tricot in 1985.

Packing measure has been used by comparison with Hausdorff mea-
sure to study the regularity and rectifiability of sets. In [4], [5], they
investigated the relationship between a general measure and its density
behaviour. The density behaviour is very useful to know the geometric
properties of a fractal set.

In this paper, we consider the case when the Hausdorff measure is
not equal to the Packing measure and find a lower bound and an upper
bound of Hausdorff measure with respect to the Packing measure.

The first part of this paper is generalization of inequalities in [6] and
the second part of this paper considers the lower Hausdorff density of
the generalized symmetric Cantor set.

2. Preliminaries

Let the funetion h : [0,00) — R* be continuous, increasing, h(0) =
0, and satisfies a smoothness condition : There exists ¢g > 0 such that
h(2z) < coh{z) forall 0 < z < 1.

In this paper, B(z,r) is the ball with center z and radius r in R",
En, E are subsets of R*, and |F{ denotes the diameter of a set E.
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DEFINITION 1. (Hausdorff measure)

WA(E) = inf( 3" A(|Eul) : E C UnFa, |Enl < 6}

pM(E) = lim i3 (E).

DEFINITION 2. The premeasure of a bounded set E is defined as

PME) = limoup{}_ h(|B(z,, 7)) : 2, € E, B(zi,r.)

are pairwise disjoint, 2r, < §}}.

P*-jsmot- outer measure, so by Method I of Munroe, the Packing
measure is defined by

p*(E) =inf{)  P*(E,): E, arebounded, E C U,E,}.

We note that u*(E) < p*(E) for a set E.

DEFINITION 3. Lower Hausdorff density function is defined by

HEDN B(z,r))
h(2r)

d,(2) = liminf £
and upper Packing density function is defined by

_ h xr,r
dp(z) :lir:lj(t)lpp (E,;;j,g 7))

3. Results

An upper bound for Hausdorff measure is given in the first theorem.
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THEOREM 1. If {E,} are disjoint, u”-measurable sets such that
E =U,E,, and if dy(z) > a, > 1 for x € E,, a.e. u¥, then p*(E) <
2on aytp"(Ep).

Proof. Since dy(z) > ap > 1for z € E,, ae. u*, for each § > 0,
there exist infinitely many r < £ such that p*(E.NB(z,r)) > anh(2r).
Let

V = {B(z,r):a;*p"(E. N B(z,r)) > h(2r), z € E,}.

Then V is a covering of E, in the Vitali sense. Using the Vitali covering
theorem for Hausdorff measure, u*(E,) < a7!p*(E,). Since E, are
p*-measurable, u*(E) < ¥ a7lp*(E,).

COROLLARY 2. dy(z) > a > 1, ae. pg* on E, then p*(E) <
ap*(E).

By the fallowing theorem, we obtain a lower bound far the Hausdorff
measure.

THEOREM 3. Let {E,} be pairwise disjoint, p*-measurable sets
such that E = U,E,. If dy(z) < a, for z € E,, ae. p* and 3
anpM(En) < oo, then ¢g' 3 a7'p*(E,) < uP(E), where co such that
h(2z) < ¢coh(z) for all0 < z < %

Proof. For each 6 > 0, let
En,& = {x EE, :ph(En N B(.’L‘,f‘)) < (an - e)h(2r)
for all 0 < r < 6 for some ¢ > 0}.

Let {U,} be a §-cover of E,, and thus of E, s, the ball B with center z
and radius {U,| certainly contains U,. Thus

Ph(En nU;) < Ph(En NB) < ah(2|U,]) < ancoh“U,D
so that
pM(En,6) < Z{ph(En AU;) : U, intersects En 5} < coanpt(En).

But E,, 5 increases to E, as § decreases to 0. Hence ca_la;lp"(En) <
p*(E,). Therefore ¢5' ¥ a7p"(E,) < u*(E).
In theorem 3, if h(z) = z*, then ¢; becomes 2°.
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COROLLARY 4. Ifd,(z) < a for z € E, a.e. p* and a7 *p*(E) < oo,
then ¢y la~'p*(E) < pM(E).
THEOREM 5. Let E, 1 E, E, be bounded and 0 < p*(E) < oo. If
im [ —lgydp"(z) = 00, then p*(E) = o0
» '-ll

n—+00

Proof. Let M be a positive integer. There exists a natural number
N such that [, FRE )dp"(:c) > M for all n > N. Then there exists

a simple function s(z) = Ef,_l a;x 4;(z) such that d—() > s(z) for all

r € A, and Z _, #*(A,) > M, where A, are disjoint and a; = s(z) if
T € A;.

Given € > 0, there exists a closed set F; C A; such that u*(F,) >
uh(A;)- i=1,2,---,k. Let ry be real number such that

-5
a;2"?
ro < —di t(Fy, Uk Fp)
1) 3 1S b Y m=1,m#fst m )
For any r < rp, put
V., = {B(z,r): |2r| < ro,z € F,, h(2r) > a;p*(A, 0 B(z,7))}.

For each 1, by the Vitali covering theorem, there exist disjoint
{B(:tj,r,)} =, such that

pMF O (UL Bzjry)) > s (F) — —

Then

Z Z h(2r,) 2 Za. Z(A N (B(z,,75)))

=1 j=1 =}
€
> Z(I‘h(Fi) oo
i=1

k
> Z a;u(A,) ~2¢ > M — 2e.

=1

So P"(En) > M for all n > N. Therefore p"(E) = 00
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DEFINITION 6. (Generalized Symmetric Cantor set) Let [0,1] =
Ey D By D --- be a decreasing sequence of sets which have the fol-
lowing properties : for each closed interval I of length a; of Fy, the
intervals I} ., ,I%, (m > 2) contained in I; are of equal length
ag+1 and equally spaced by dxy1. The generalized Symmetric Cantor
set E is defined as E = N,{U™, I}],where {I}} are the closed intervals
of length a, of E,.

REMARK 7. Let E be a generalized Symmetric Cantor set. Then if

the Hausdorff dimension of E is equal to the Packing dimension, then
logm™"

s = lim .
n—co loga,

REMARK 8. Let E be a generalized Symmetric Cantor set. Then

. logm™ P i
s= lim if and only if lim /@, = (L) .

n—oo loga,

Q;B ce

. Ant1 .
lim —— < lim {/a
juniniuied _— e 00 n»

n—oo Gn

it follows that lim _ %’—‘ <m-*}.

From now on, h(z) = 2°, 0 < s < 1, p* = p°, d, = dj,, d, = E;,

and c_i: = a;. In fact, d,(z) <27° for z € E ae. p*if 0 < p*(E) < o0
and 3;(:::) 21lforz € E ae. p*if 0 < p*(E) < 0.

The following theorem shows that under certain conditions a con-
stant v < 27 exists such that du®(z) < v for all = in the Generalized
Symmetric Cantor set E. This is a generalization of Theorem 3 {4].

THEOREM 9. Let E be a generalized Symmetric Cantor set. If the
Hausdorff dimension of s is equal to the Packing dimension, then

&)< Gy 2Ly fral zeE
L 2 mMms — M

Proof. Since lim__ 5{.‘-:'—‘ < (#)% < B < X, there exist infinitely
many n such that fﬁi'—‘ < 3. Hence, for those same infinitely many

(an+1> an)a

bn+l - Qp — MApy1
Gn {(m ~ 1)a,

>m11u-mm.
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Therefore, T::T < % Now, let z be any endpoint of E, and let &,
be the length of the contiguous interval of E with one of the endpoints
being z. Then,there exist infinitely many of the above (@n43,6,) such

that bnq1 + @ny1 < b,. Let r = a1 + byyy. Therefore,

p’(EﬂB(z,r}) (a!ﬂ-l)’ _ }_ ey %n g %ntl\,
(27’)’ (2bn+1)’ o (2) (bn+1) ( aqn )

1, m—1 .,
<(3) (m) 8.
Let z be a limit point of E which is not an endpoint of E. Then z is

contained in infinitely many closed intervals of length (an41, an) given
above with respect to the endpoints. Therefore r > b,4; and

u'(E0 B(z,r))
(2r)

1., m—-1,_,
Letting n — oo and 8 approaches (%)’,

4;(w)$(%)’(-m7”i)’ forall z¢k.

ms —m
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