SEMILINEAR ABSTRACT CAUCHY PROBLEM ASSOCIATED WITH AN EXPONENTIALLY BOUNDED C-SEMIGROUP IN A BANACH SPACE

Ki Sik Ha and Yeol Je Сho

1. Introduction

The purpose of this paper is to consider the initial value problem

$$
\begin{align*}
& \frac{d}{d t} u(t)=Z u(t)+f(t, u(t)), \quad t>0 \tag{1}\\
& u(0)=u_{0}
\end{align*}
$$

in a Banach space X, where Z is the generator of an exponentally bounded C-semigroup in $X, f(t, u):[0, T] \times X \rightarrow X$ and $u_{0} \in X$.

Davies-Pang [1] showed that (1) with $f(t, u) \equiv 0$ has a unique solution when $T=\infty$ and Ha [2] with $f(t, u) \equiv f(t)$ when $T<\infty$ under some assumptions.

One may refer to Pazy [3] for (1) associated with a C_{0} semigroup in X.

In 2, we recall definitions and chracterizations for an exponentially bounded C-semigroup given in [1], [2] which we need. In 3, we are concerned with existence and uniqueness of solutions of (1).

2. Preliminaries

Let X be a Banach space and let C be an injective linear operator from X into itself with dense range $R(C)$ in X. We say that $\{S(t) \mid t \geq 0\}$ is an exponentially bounded C-semigroup in X if it is a strongly continuous family of bounded linear operator from X into itself satisfying
$\left(a_{1}\right) S(0)=C$,
(a_{2}) $S(t+s) C=S(t) S(s)$ for $t, s \geq 0$,
(a_{3}) there exist constants $M \geq 0$ and $a \geq 0$ such that $|S(t)| \leq M e^{a t}$ for $t \geq 0$.

[^0]It follows that $S(t) C=C S(t)$ and for $x \in R(C), S(t) x \in R(C)$, $C^{-1} S(t) x=S(t) C^{-1} x$. Let $T(t)$ be the closed linear operator defined by

$$
\begin{equation*}
T(t) x=C^{-1} S(t) x \tag{2}
\end{equation*}
$$

for $x \in D(T(t))=\{x \in X \mid S(t) x \in R(c)\}$. Then $R(C) \subset D(T(t))$ and
$\left(b_{1}\right) T(0) x=x$ for $x \in X$,
$\left(b_{2}\right) T(t+s) x=T(t) T(s) x$ for $x \in R\left(C^{2}\right)$,
$\left(b_{3}\right) T(t) x$ is continuous in $t \geq 0$ for $x \in R\left(C^{2}\right)$.
Let $\lambda>a$. We define the bounded linear operator L_{λ} from X into itself by

$$
L_{\lambda} x=\int_{0}^{\infty} e^{-\lambda t} S(t) x d t
$$

for $x \in X$. Then L_{λ} with $\lambda>a$ is injective and $\left(\lambda-L^{-1} C\right) x$ is independent of $\lambda>a$ for $x \in X$ with $C x \in R\left(L_{\lambda}\right)$. Set $Z x=(\lambda-$ $\left.L_{\lambda}^{-1} C\right) x$ for $x \in D(Z)=\left\{x \in X \mid C x \in R\left(L_{\lambda}\right)\right\}$ with $\lambda>a$. Then Z is called the generator of $\{S(t) \mid t \geq 0\}$ with $|S(t)| \leq M e^{a t}$ and we have

$$
\begin{equation*}
(\lambda-Z)^{-1} C x=L_{\lambda} x \text { and } L_{\lambda} x \in D(Z) \tag{3}
\end{equation*}
$$

for $x \in X$ and $\lambda>a$. If C is bijective, then $C^{k} D(Z)=D(Z)(k=$ $0,1,2, \cdots)$, where $C^{0}=I$ (the identity), $C^{k}=C C^{k-1}$ and $C^{k} D(Z)=$ $\left\{C^{k} x \in X \mid x \in D(z)\right\}$ for $k=1,2, \cdots$.

The generator Z is densely defined in X and $S(t) x \in D(Z)$,

$$
\begin{equation*}
\frac{d}{d t} S(t) x=Z S(t) x=S(t) Z x \tag{4}
\end{equation*}
$$

for $x \in D(Z)$. Furthermore $T(t) x \in D(Z)$ and

$$
\begin{equation*}
\frac{d}{d t} T(t) x=Z T(t) x=T(t) Z x \tag{5}
\end{equation*}
$$

for $x \in C D(Z)$.

Definition 1. A function $u(t):[0, T] \rightarrow X$ is called a solution of (1) on $[0, T]$ if the the following $\left(c_{1}\right)-\left(c_{4}\right)$ are satisfied :
$\left(c_{1}\right) u(t)$ is continuous on $t \in[0, T]$,
$\left(c_{2}\right) u(t)$ is continuously differential in $t \in[0, T]$,
$\left(c_{3}\right) u(t) \in D(Z)$ for $t \in(0, T)$,
(c_{4}) (1) holds where $T<\infty$.
From the same method as in [2], we have two theorems :
Theorem 2. Set $g(t)=f(t, u)$ for every $u \in X$. Let $g(t) \in R(C)$ for $t \in[0, T]$ with $C^{-1} g \in L^{1}(0, T ; X)$. Let g be continuous on $[0, T]$. If $\int_{0}^{t} T(t-s) g(s) d s \in C^{4} D(Z)$ and $Z \int_{0}^{t} T(t-s) g(s) d s$ is continuous in $t \in[0, T]$, then (1) has a unique solution on $[0, T]$ with $f(t, u)=g(t)$.

Theorem 3. Set $g(t)=f(t, u)$ for every $u \in X$. Let $g(t) \in R\left(C^{2}\right)$ for $t \in[0, T]$ and let $C^{-1} g(t)$ be continuously differentiable in $t \in[0, T]$ Then (1) has a unique solution on $[0, T]$ with $f(t, u)=g(t)$.

3. Semilinear abstract Cauchy problem

Throughout this section, let $\{S(t) \mid t \geq 0\}$ be an exponentially bounded C-semigroup in X with $|S(t)| \leq M e^{a t}$ and Z its generator. Let $T(t)=C^{-1} S(t)$ be the operator defined by (2).

We give a property of a solution of (1) on $[0, T]$ by the similar method of the proof in [2].

Proposition 4. Let $f(t, u) \in R\left(C^{2}\right)$ for $t \in[0, T]$ and $u \in X$ with $C^{-1} f(t, u)$ is continuous in $(t, u) \in[0, T] \times X$. If $u(t)$ is a solution of (1) on $[0, T]$ for $u_{0} \in C^{2} D(Z)$, then

$$
\begin{equation*}
u(t)=T(t) u_{0}+\int_{0}^{t} T(t-s) f(s, u(s) d s \tag{6}
\end{equation*}
$$

for $t \in[0, T]$.
Definition 5. A continuous function $u(t):[0, T] \times X$ is called a mild solution of (1) on $[0, T]$ if $u(t)$ is satisfied by (6).

Theorem 6. Let $f(t, u) \in R\left(C^{2}\right)$ for $t \in[0, T]$ and $u \in X$. Let $C^{-1} f(t, u)$ be continuous in $t \in[0, T]$ and Lipschitz continuous in $u \in X$ with its Lipschitz constant L. Then (1) has a unique mild solution $u(t)$ on $[0, T]$ for $u_{0} \in C^{2} D(Z)$. Moreover, let $u(t), v(t)$ be mild solutions of (1) for $u_{0}, v_{0} \in C^{2} D(Z)$, respectively. Then

$$
|u(t)-v(t)| \leq K\left|C^{-1} u_{0}-C^{-1} v_{0}\right|
$$

for some constant $K>0$.
Proof :. Let $u_{0} \in C^{2} D(Z)$. Set $\mathcal{C}=C([0, T] ; X)$. We define an operator $J: \mathcal{C} \rightarrow \mathcal{C}$ by

$$
(J u)(t)=T(t) u_{0}+\int_{0}^{t} T(t-s) f(s, u(s)) d s
$$

for $u \in \mathcal{C}$. Then, every $u, v \in \mathcal{C}$,

$$
\begin{aligned}
|(J u)(t)-(J v)(t)| & \leq \int_{0}^{t}|S(t)|\left|C^{-1} f(s, u(s))-C^{-1} f(s, v(s))\right| d s \\
& \leq L M e^{a T} t|u-v|_{\infty} .
\end{aligned}
$$

Thus

$$
|J u-J v|_{\infty} \leq L M e^{a t} T|u-v|_{\infty},
$$

where $|u|_{\infty} \leq \sup _{0 \leq t \leq T}|u(t)|$. Similarly we have for $n \geq 2$ and $u, v \in \mathcal{C}$,

$$
\left|J^{n} u-J^{n} v\right|_{\infty} \leq \frac{\left(L M e^{a T} T\right)^{n}}{n!}|u-v|_{\infty}
$$

Thus J^{n} has a fixed point in \mathcal{C} for sufficiently large n such that $\frac{\left(L M e^{a T} T\right)^{n}}{n!}<1$. Therefore J has a fixed point u in \mathcal{C} and thus $u(t)$ is a mild solution of (1) on $[0, T]$ for $u_{0} \in C^{2} D(Z)$.

Let $u(t), v(t)$ be mild solutions of (1) on $[0, T]$ for $u_{0}, v_{0} \in C^{2} D(Z)$, respectively. Then

$$
|u(t)-v(t)| \leq M e^{a T}\left|C^{-1} u_{0}-C^{-1} v_{0}\right|+\int_{0}^{t}|u(s)-v(s)| d s
$$

for $t \in[0, T]$. From Gronwall's inequality, we have (7).
By the similar method as Theorem 6, we have the following result.

Proposition 7. Under the assumptions as in Theorem 6, the integral equation

$$
u(t)=I(t)+\int_{0}^{t} T(t-s) f(s, u(s)) d s
$$

has a unique solution for every continuous function $I(t)$ on $[0, T]$.
Theorem 8. Let $f(t, u) \in R\left(C^{3}\right)$ for $t \in[0, T], u \in X$, and $C^{-3} f(t, u)$ continuously differentiable in $(t, u) \in[0, T] \times X$. Then for every $u_{0} \in C^{2} D(Z)$, a mild solution of (1) is a solution of (1) on $[0, T]$.

Proof :. Let $u(t)$ be a mild solution of (1) on $[0, T]$ for $u_{0} \in C^{2} D(Z)$. Then

$$
\begin{equation*}
u(t)=T(t) u_{0}+\int_{0}^{t} T(t-s) f(s, u(s)) d s \tag{8}
\end{equation*}
$$

Set $A(t)=\frac{\partial}{\partial u} C^{-1} f(t, u)$,

$$
I(t)=T(t) f\left(0, u_{0}\right)+Z T(t) u_{0}+\int_{0}^{t} T(t-s) \frac{\partial}{\partial s} f(s, u(s)) d s
$$

and $g(t, u)=A(t) u$ for $t \in[0, T]$ and $u \in X$. Then $g(t, u)$ is continuous in $t \in[0, T]$ and Lipschitz continuous in $u \in X$, and $I(t)$ is continuous in $t \in[0, T]$. Moreover, $g(t, u) \in R\left(C^{2}\right)$ for $(t, u) \in[0, T] \times X$. It follows from Proposition 7 that the integral equation

$$
v(t)=I(t)+\int_{0}^{t} T(t-s) g(s, v(s)) d s
$$

has a unique continuous solution on $[0, T]$. From the continuous differentiability of $f(t, u)$, we have

$$
f(s, u(s+h))-f(s, u(s))=\frac{\partial}{\partial u} f(s, u)(u(s+h)-u(s))+\epsilon_{\mathbf{1}}(s, h),
$$

and

$$
f(s+h, u(s+h))-f(s, u(s+h))=\frac{\partial}{\partial s} f(s, u(s+h)) h+\epsilon_{2}(s, h),
$$

where $\frac{1}{h}\left|\epsilon_{i}(s, h)\right| \rightarrow 0$ as $h \rightarrow 0$ uniformly on $[0, T]$ for $i=1,2$. Set

$$
v_{h}(t)=\frac{1}{h}(u(t+h)-u(t))-v(t) .
$$

Then

$$
\begin{equation*}
v_{h}(t)=\epsilon_{h}+\int_{0}^{t} T(t-s) g\left(s, v_{h}(s)\right) d s \tag{9}
\end{equation*}
$$

where
$\epsilon_{h}=\epsilon_{h}^{(1)}+\epsilon_{h}^{(2)}+\epsilon_{h}^{(3)}+\epsilon_{h}^{(4)}$,
$\epsilon_{h}^{(1)}=\frac{1}{h}\left(T(t+h) u_{0}-T(t) u_{0}\right)-Z T(t) u_{0}$,
$\epsilon_{h}^{(2)}=\frac{1}{h} \int_{0}^{i} T(t-s)\left(\epsilon_{1}(s, h)+\epsilon_{2}(s, h)\right) d s$,
$\epsilon_{h}^{(3)}=\int_{0}^{t} T(t-s)\left(\frac{\partial}{\partial s} f(s, u(s+h))-\frac{\partial}{\partial s} f(s, u(s)) d s\right.$,
and
$\epsilon_{h}^{(4)}=\frac{1}{h} \int_{0}^{h} T(t+h-s) f(s, u(s)) d s-T(t) f\left(0, u_{0}\right)$.
It follows that $\lim _{h \rightarrow 0} \epsilon_{h}^{(i)}=0$ for $i=1,2,3,4$ and thus $\lim _{h \rightarrow 0} \epsilon_{h}=0$. Set

$$
K=\max \left\{\left|C^{-1} A(s)\right| \mid 0 \leq s \leq T\right\}
$$

Then from (9),

$$
\left|v_{h}(t)\right| \leq\left|\epsilon_{h}\right|+K M e^{a T} \int_{0}^{t}\left|v_{h}(s)\right| d s
$$

By Gronwall's inequality,

$$
\left|v_{h}(t)\right| \leq\left|\epsilon_{h}\right| e^{K T M e^{e T}}
$$

and thus $\lim _{h \rightarrow 0} v_{h}(t)=0$. Therefore $u(t)$ is differentiable on $[0, T]$ and $\frac{d u}{d t}=v(t)$. Since $v(t)$ is continuous in $t \in[0, T], u(t)$ is continuously differentiable in $t \in[0, T]$ and $C^{-1} f(t, u(t)$ is also continuously differentiable. From Theorem 3, the initial problem

$$
\left\{\begin{array}{l}
\frac{d}{d t} w(t)=Z w(t)+f(t, u(t)) \\
w(0)=u_{0}
\end{array}\right.
$$

has a unique solution $w(t)$ on $[0, T]$ satisfying

$$
\begin{equation*}
w(t)=T(t) u_{0}+\int_{0}^{t} T(t-s) f(s, u(s)) d s \tag{10}
\end{equation*}
$$

From (8) and (10), $u(t)=w(t)$ on $[0, T]$. Therefore $u(t)$ is a solution of (1) on $[0, T]$.

For an application, let C be a bijective bounded inear operator from X onto itself. Let $\{S(t)\{t \geq 0\}$ be an exponentially bounded C-semigroup in X with $|S(t)| \leq M e^{a t}$.
$D(Z)$ with a norm $|\cdot| z$ defined by $|u| z=|u|+|Z u|$ for every $u \in D(Z)$ is a Banach space. Let $C_{Z}, S_{Z}(t)$ be the restrictions of $C, S(t)$ on $D(Z)$, respectively. Since $C^{k} D(Z)=D(Z)$ for $k=1,2, \cdots$ and $S(t) u \in D(Z)$ for every $u \in D(Z), C_{Z}$ is a bijective bounded linear operator from $D(Z)$ onto itself and $\left\{S_{Z}(t) \mid t \geq 0\right\}$ is an exponentially bounded C_{Z}-semigroup in $D(Z)$ with $\left|S_{Z}(t)\right| Z \leq M e^{a t}$.

Theorem 9. Let $C^{-1} f(t, u):\{0, T\} \times D(Z) \rightarrow D(Z)$ be continuous in t and Lipschitz continuous in u. Then (1) has a unique solution on $[0, T]$ for every $u_{0} \in D(Z)$.

Proof:- From Theorem 6, (1) has a unique mild solution $u(t)$ on $[0, T]$ for every $u_{0} \in D(Z)$ satisfying

$$
u(t)=T(t) u_{0}+\int_{0}^{t} T(t-s) f(s, u(s)) d s
$$

in $D(Z)$. Since $f(t, u(t)$) is continuous in $t \in[0, T]$ in $D(Z), Z f(t, u(t))$ is also continuous in $t \in[0, T]$ in X. Thus

$$
\int_{0}^{t} T(t-s) f(s, u(s)) d s \in C^{4} D(Z)
$$

and $Z \int_{0}^{t} T(t-s) f(s, u(s)) d s$ is continuous in $t \in[0, T]$ in X. From Theorem 2, (1) has a unique solution on $[0, T]$ for every $u_{3} \in D(Z)$.

References

1. E. B. Davies and M. M. Pang, The Cauchy problem and a generation of the Hille-Yosida, Proc. London Math. Soc. 55 (1987), 181-208.
2. K. S. Ha, Linear abstract Cauchy problem associated with an exponentially bounded C-semigroup in a Banach space, Bull. Kor. Math. Soc. 27 (1990), 157-164.
3. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differental Equations, Springer-Verlag, New York, 1983.

Department of Mathematics
Pusan National University
Pusan 609-735. Korea

Department of Mathematics
Gyeongsang National University
Jinju 660-701, Korea

[^0]: Received December 15,1991.
 Supported by KOSEF research grant 88-07-12-01 .

