Pusan Kyongnam Math. J. 7(1991), No. 2, pp. 171-178

SEMILINEAR ABSTRACT CAUCHY PROBLEM ASSOCIATED WITH AN EXPONENTIALLY BOUNDED C-SEMIGROUP IN A BANACH SPACE

KI SIK HA AND YEOL JE CHO

1. Introduction

The purpose of this paper is to consider the initial value problem

(1)
$$\frac{d}{dt}u(t) = Zu(t) + f(t, u(t)), \quad t > 0$$
$$u(0) = u_0$$

in a Banach space X, where Z is the generator of an exponentally bounded C-semigroup in X, $f(t, u) : [0, T] \times X \to X$ and $u_0 \in X$.

Davies-Pang [1] showed that (1) with $f(t, u) \equiv 0$ has a unique solution when $T = \infty$ and Ha [2] with $f(t, u) \equiv f(t)$ when $T < \infty$ under some assumptions.

One may refer to Pazy [3] for (1) associated with a C_0 semigroup in X.

In 2, we recall definitions and chracterizations for an exponentially bounded C-semigroup given in [1], [2] which we need. In 3, we are concerned with existence and uniqueness of solutions of (1).

2. Preliminaries

Let X be a Banach space and let C be an injective linear operator from X into itself with dense range R(C) in X. We say that $\{S(t)|t \ge 0\}$ is an exponentially bounded C-semigroup in X if it is a strongly continuous family of bounded linear operator from X into itself satisfying

$$(a_1) S(0) = C,$$

- (a₂) S(t+s)C = S(t)S(s) for $t, s \ge 0$,
- (a₃) there exist constants $M \ge 0$ and $a \ge 0$ such that $|S(t)| \le M e^{at}$ for $t \ge 0$.

Received December 15,1991.

Supported by KOSEF research grant 88-07-12-01.

It follows that S(t)C = CS(t) and for $x \in R(C)$, $S(t)x \in R(C)$, $C^{-1}S(t)x = S(t)C^{-1}x$. Let T(t) be the closed linear operator defined by

$$(2) T(t)x = C^{-1}S(t)x$$

for $x \in D(T(t)) = \{x \in X | S(t)x \in R(c)\}$. Then $R(C) \subset D(T(t))$ and (b₁) T(0)x = x for $x \in X$, (b₂) T(t+s)x = T(t)T(s)x for $x \in R(C^2)$, (b₃) T(t)x is continuous in $t \ge 0$ for $x \in R(C^2)$.

Let $\lambda > a$. We define the bounded linear operator L_{λ} from X into itself by

$$L_{\lambda}x = \int_0^\infty e^{-\lambda t} S(t) x dt$$

for $x \in X$. Then L_{λ} with $\lambda > a$ is injective and $(\lambda - L^{-1}C)x$ is independent of $\lambda > a$ for $x \in X$ with $Cx \in R(L_{\lambda})$. Set $Zx = (\lambda - L_{\lambda}^{-1}C)x$ for $x \in D(Z) = \{x \in X | Cx \in R(L_{\lambda})\}$ with $\lambda > a$. Then Z is called the generator of $\{S(t)|t \geq 0\}$ with $|S(t)| \leq Me^{at}$ and we have

(3)
$$(\lambda - Z)^{-1}Cx = L_{\lambda}x \text{ and } L_{\lambda}x \in D(Z)$$

for $x \in X$ and $\lambda > a$. If C is bijective, then $C^k D(Z) = D(Z)$ $(k = 0, 1, 2, \cdots)$, where $C^0 = I$ (the identity), $C^k = CC^{k-1}$ and $C^k D(Z) = \{C^k x \in X | x \in D(z)\}$ for $k = 1, 2, \cdots$.

The generator Z is densely defined in X and $S(t)x \in D(Z)$,

(4)
$$\frac{d}{dt}S(t)x = ZS(t)x = S(t)Zx$$

for $x \in D(Z)$. Furthermore $T(t)x \in D(Z)$ and

(5)
$$\frac{d}{dt}T(t)x = ZT(t)x = T(t)Zx$$

for $x \in CD(Z)$.

172

DEFINITION 1. A function $u(t): [0,T] \to X$ is called a solution of (1) on [0,T] if the the following $(c_1) \cdot (c_4)$ are satisfied:

- (c₁) u(t) is continuous on $t \in [0, T]$,
- (c₂) u(t) is continuously differential in $t \in [0, T]$,
- $(c_3) \ u(t) \in D(Z) \text{ for } t \in (0,T),$
- (c₄) (1) holds where $T < \infty$.

From the same method as in [2], we have two theorems :

THEOREM 2. Set g(t) = f(t, u) for every $u \in X$. Let $g(t) \in R(C)$ for $t \in [0,T]$ with $C^{-1}g \in L^1(0,T;X)$. Let g be continuous on [0,T]. If $\int_0^t T(t-s)g(s)ds \in C^4D(Z)$ and $Z \int_0^t T(t-s)g(s)ds$ is continuous in $t \in [0,T]$, then (1) has a unique solution on [0,T] with f(t,u) = g(t).

THEOREM 3. Set g(t) = f(t, u) for every $u \in X$. Let $g(t) \in R(C^2)$ for $t \in [0, T]$ and let $C^{-1}g(t)$ be continuously differentiable in $t \in [0, T]$. Then (1) has a unique solution on [0, T] with f(t, u) = g(t).

3. Semilinear abstract Cauchy problem

Throughout this section, let $\{S(t)|t \ge 0\}$ be an exponentially bounded *C*-semigroup in *X* with $|S(t)| \le Me^{at}$ and *Z* its generator. Let $T(t) = C^{-1}S(t)$ be the operator defined by (2).

We give a property of a solution of (1) on [0, T] by the similar method of the proof in [2].

PROPOSITION 4. Let $f(t,u) \in R(C^2)$ for $t \in [0,T]$ and $u \in X$ with $C^{-1}f(t,u)$ is continuous in $(t,u) \in [0,T] \times X$. If u(t) is a solution of (1) on [0,T] for $u_0 \in C^2D(Z)$, then

(6)
$$u(t) = T(t)u_0 + \int_0^t T(t-s)f(s,u(s)ds$$

for $t \in [0, T]$.

DEFINITION 5. A continuous function $u(t) : [0, T] \times X$ is called a mild solution of (1) on [0, T] if u(t) is satisfied by (6).

THEOREM 6. Let $f(t, u) \in R(C^2)$ for $t \in [0, T]$ and $u \in X$. Let $C^{-1}f(t, u)$ be continuous in $t \in [0, T]$ and Lipschitz continuous in $u \in X$ with its Lipschitz constant L. Then (1) has a unique mild solution u(t) on [0, T] for $u_0 \in C^2D(Z)$. Moreover, let u(t), v(t) be mild solutions of (1) for $u_0, v_0 \in C^2D(Z)$, respectively. Then

$$|u(t) - v(t)| \le K |C^{-1}u_0 - C^{-1}v_0|$$

for some constant K > 0.

Proof: Let $u_0 \in C^2D(Z)$. Set $\mathcal{C} = C([0,T];X)$. We define an operator $J: \mathcal{C} \to \mathcal{C}$ by

$$(Ju)(t) = T(t)u_0 + \int_0^t T(t-s)f(s,u(s))ds$$

for $u \in \mathcal{C}$. Then, every $u, v \in \mathcal{C}$,

$$\begin{aligned} |(Ju)(t) - (Jv)(t)| &\leq \int_0^t |S(t)| \, |C^{-1}f(s,u(s)) - C^{-1}f(s,v(s))| ds \\ &\leq LMe^{aT}t |u-v|_{\infty}. \end{aligned}$$

Thus

$$|Ju-Jv|_{\infty} \leq LMe^{at}T|u-v|_{\infty},$$

where $|u|_{\infty} \leq \sup_{0 \leq t \leq T} |u(t)|$. Similarly we have for $n \geq 2$ and $u, v \in C$,

$$|J^n u - J^n v|_{\infty} \leq \frac{(LMe^{aT}T)^n}{n!} |u - v|_{\infty}.$$

Thus J^n has a fixed point in C for sufficiently large n such that $\frac{(LMe^{aT}T)^n}{n!} < 1$. Therefore J has a fixed point u in C and thus u(t) is a mild solution of (1) on [0,T] for $u_0 \in C^2D(Z)$.

Let u(t), v(t) be mild solutions of (1) on [0, T] for $u_0, v_0 \in C^2 D(Z)$, respectively. Then

$$|u(t) - v(t)| \le M e^{aT} |C^{-1}u_0 - C^{-1}v_0| + \int_0^t |u(s) - v(s)| ds$$

for $t \in [0, T]$. From Gronwall's inequality, we have (7).

By the similar method as Theorem 6, we have the following result.

PROPOSITION 7. Under the assumptions as in Theorem 6, the integral equation

$$u(t) = I(t) + \int_0^t T(t-s)f(s,u(s))ds$$

has a unique solution for every continuous function I(t) on [0, T].

THEOREM 8. Let $f(t, u) \in R(C^3)$ for $t \in [0, T]$, $u \in X$, and $C^{-3}f(t, u)$ continuously differentiable in $(t, u) \in [0, T] \times X$. Then for every $u_0 \in C^2D(Z)$, a mild solution of (1) is a solution of (1) on [0, T].

Proof: Let u(t) be a mild solution of (1) on [0,T] for $u_0 \in C^2 D(Z)$. Then

(8)
$$u(t) = T(t)u_0 + \int_0^t T(t-s)f(s,u(s))ds.$$

Set $A(t) = \frac{\partial}{\partial u} C^{-1} f(t, u),$ $I(t) = T(t)f(0, u_0) + ZT(t)u_0 + \int_0^t T(t-s)\frac{\partial}{\partial s} f(s, u(s))ds$

and g(t,u) = A(t)u for $t \in [0,T]$ and $u \in X$. Then g(t,u) is continuous in $t \in [0,T]$ and Lipschitz continuous in $u \in X$, and I(t) is continuous in $t \in [0,T]$. Moreover, $g(t,u) \in R(C^2)$ for $(t,u) \in [0,T] \times X$. It follows from Proposition 7 that the integral equation

$$v(t) = I(t) + \int_0^t T(t-s)g(s,v(s))ds$$

has a unique continuous solution on [0, T]. From the continuous differentiability of f(t, u), we have

$$f(s,u(s+h)) - f(s,u(s)) = \frac{\partial}{\partial u}f(s,u)(u(s+h) - u(s)) + \epsilon_1(s,h),$$

 \mathbf{and}

$$f(s+h,u(s+h)) - f(s,u(s+h)) = \frac{\partial}{\partial s}f(s,u(s+h))h + \epsilon_2(s,h),$$

where $\frac{1}{h} |\epsilon_i(s, h)| \to 0$ as $h \to 0$ uniformly on [0, T] for i = 1, 2. Set

$$v_h(t) = \frac{1}{h}(u(t+h) - u(t)) - v(t).$$

Then

(9)
$$v_h(t) = \epsilon_h + \int_0^t T(t-s)g(s,v_h(s))ds,$$

where

$$\begin{aligned} \epsilon_{h} &= \epsilon_{h}^{(1)} + \epsilon_{h}^{(2)} + \epsilon_{h}^{(3)} + \epsilon_{h}^{(4)}, \\ \epsilon_{h}^{(1)} &= \frac{1}{h} (T(t+h)u_{0} - T(t)u_{0}) - ZT(t)u_{0}, \\ \epsilon_{h}^{(2)} &= \frac{1}{h} \int_{0}^{t} T(t-s)(\epsilon_{1}(s,h) + \epsilon_{2}(s,h)) ds, \\ \epsilon_{h}^{(3)} &= \int_{0}^{t} T(t-s)(\frac{\partial}{\partial s}f(s,u(s+h)) - \frac{\partial}{\partial s}f(s,u(s)) ds, \end{aligned}$$

 \mathbf{and}

$$\epsilon_h^{(4)} = \frac{1}{h} \int_0^h T(t+h-s)f(s,u(s))ds - T(t)f(0,u_0).$$

It follows that $\lim_{h\to 0} \epsilon_h^{(i)} = 0$ for i = 1, 2, 3, 4 and thus $\lim_{h\to 0} \epsilon_h = 0$. Set

$$K = \max\{|C^{-1}A(s)| \ |0 \le s \le T\}.$$

Then from (9),

$$|v_h(t)| \leq |\epsilon_h| + KMe^{aT} \int_0^t |v_h(s)| ds.$$

By Gronwall's inequality,

$$|v_h(t)| \leq |\epsilon_h| e^{KTMe^{aT}}$$

176

and thus $\lim_{h\to 0} v_h(t) = 0$. Therefore u(t) is differentiable on [0,T]and $\frac{du}{dt} = v(t)$. Since v(t) is continuous in $t \in [0,T]$, u(t) is continuously differentiable in $t \in [0,T]$ and $C^{-1}f(t,u(t))$ is also continuously differentiable. From Theorem 3, the initial problem

$$\begin{cases} \frac{d}{dt}w(t) = Zw(t) + f(t, u(t)),\\ w(0) = u_0 \end{cases}$$

has a unique solution w(t) on [0, T] satisfying

(10)
$$w(t) = T(t)u_0 + \int_0^t T(t-s)f(s,u(s))ds.$$

From (8) and (10), u(t) = w(t) on [0, T]. Therefore u(t) is a solution of (1) on [0, T].

For an application, let C be a bijective bounded linear operator from X onto itself. Let $\{S(t)|t \ge 0\}$ be an exponentially bounded C-semigroup in X with $|S(t)| \le Me^{at}$.

D(Z) with a norm $|\cdot|_Z$ defined by $|u|_Z = |u| + |Zu|$ for every $u \in D(Z)$ is a Banach space. Let C_Z , $S_Z(t)$ be the restrictions of C, S(t) on D(Z), respectively. Since $C^k D(Z) = D(Z)$ for $k = 1, 2, \cdots$ and $S(t)u \in D(Z)$ for every $u \in D(Z)$, C_Z is a bijective bounded linear operator from D(Z) onto itself and $\{S_Z(t)|t \ge 0\}$ is an exponentially bounded C_Z -semigroup in D(Z) with $|S_Z(t)|_Z \le Me^{at}$.

THEOREM 9. Let $C^{-1}f(t,u): [0,T] \times D(Z) \to D(Z)$ be continuous in t and Lipschitz continuous in u. Then (1) has a unique solution on [0,T] for every $u_0 \in D(Z)$.

Proof: From Theorem 6, (1) has a unique mild solution u(t) on [0,T] for every $u_0 \in D(Z)$ satisfying

$$u(t) = T(t)u_0 + \int_0^t T(t-s)f(s,u(s))ds$$

in D(Z). Since f(t, u(t)) is continuous in $t \in [0, T]$ in D(Z), Zf(t, u(t)) is also continuous in $t \in [0, T]$ in X. Thus

$$\int_0^t T(t-s)f(s,u(s))ds \in C^4D(Z)$$

and $Z \int_0^t T(t-s)f(s,u(s))ds$ is continuous in $t \in [0,T]$ in X. From Theorem 2, (1) has a unique solution on [0,T] for every $u_0 \in D(Z)$.

References

- 1. E. B. Davies and M. M. Pang, The Cauchy problem and a generation of the Hille-Yosida, Proc. London Math. Soc. 55 (1987), 181-208.
- K. S. Ha, Linear abstract Cauchy problem associated with an exponentially bounded C-semigroup in a Banach space, Bull. Kor. Math. Soc. 27 (1990), 157-164.
- 3. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.

Department of Mathematics Pusan National University Pusan 609-735, Korea

Department of Mathematics Gyeongsang National University Jinju 660–701, Korea