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SEMILINEAR ABSTRACT CAUCHY PROBLEM
ASSOCIATED WITH AN EXPONENTIALLY

BOUNDED C-SEMIGROUP IN A BANACH SPACE

Ki Sik Ha and Yeol Je Cho

1. Introduction
The purpose of this paper is to consider the initial value problem

⑴ 監u(t) = Zu(t) + /(t, “(£)), t > 0

”(0) = Uq

in a Banach 四ace X. where Z is the generator of an exponentaUy 
bounded C-semigroup in X〉/(t, u) : [0,幻 x X —> X and uq E X.

Davies-Pang [1] showed that (1) with /(t5 u) = 0 has a unique solu
tion when T = 8 and Ha [2] with /(t, u)三 f(t) when T < oo under 
some assumptions.

One may 호efer to Pazy [3] fo호 (1) associated with a Co semigroup in 
X.

In 2, we recall definitions and chracterizations for an exponentially 
bounded C-semigroup given in [1], [2] which we need. In 3, we are 
concerned with existence and uniqueness of solutions of (1).

2. Preliminaries
Let X be a Banach space and let C be an injective linear oper

ator from X into itself with dense range J?(C) in X. We say that 
{S(圳t > 0) is an exponentially bounded (7-semigroup in. X if it is 
a strongly continuous family of bounded linear operator from X into 
itself satisfying

M s(o)= G
(。2)+ s)C = S(£)S(s) for > 0,
(a3) there exist constants M > 0 and a > 0 such that |S(圳 으 Meat 

for t > 0.
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It follows that S(t)C = CS(t) and for x E S(t)x E
= S(t)C—Let T(t) be the closed linear operator defined 

by

(2) T(t)x = C^S(t)x 

for x € D(T(t)) = {/ £ X\S(t)x E K(c)). Then R(C) C and
(61) :T(0)£ = x for j: G X,
(62) T(t + s)x = T(i)T(5)x for x € J?(C2),
(63) 꼬is continuous in t > 0 for x € K(C2).
Let A > a. We define the bounded linear operator L\ from X into 

itself by
yOO

L\x = / e~Xt S(t)xdt
Jq

for x E X. Then L\ with 入 > a i오 injective and (A — L"lC)x is 
independent o£ A > a for r G X with Cx G R(L\). Set Zx = (A — 
L了C)x for X e £)(Z) = {xe X\Cx e R(乙人)} with A > a. Then Z is 
called the generator of {S(f)|i > 0} with |S(/)| < Meai and we have

(3) (A - Z)'lCx = Lxx and Lxx e Z>(Z)

for x E X and A > a. If C is bijective, then CkD(Z) = Z)(Z) (k = 
0,1,2, ), where C° = I (the identity), Ck = CCk^1 and CkD{Z)=
{Ckx e X\z € D(z)} f이3 = 1,2, . . • .

The generator Z is densely defined in X and S(t)x g D(Z),

(4) 工=ZS(t)x = S(t)Zx 
at

for x G Z>(Z). Furthermore T(t)x E D(Z) and

(5) = ZT(t)x = T(t)Zx
at

for x € CD(Z).
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DEFINITION 1. A function u(t) : [0, T]―》X is called a solution of
(1) on [0,T] if 나le the following (ci)-(c<) are satisfied :

(ci) u(t) is continuous on t G [0, T],
(c2) u(t) is continuously differential in t 6 [0,T],
(c3) u(t)GP(Z)fori e(0,T),
(C4) (1) holds where 꼬 < oo.

From the same method as in [2], we have two theorems :

THEOREM 2. Set g(t) = for every u E X, Let g(t) G 7?(C) 
for t E [0,T] with C~lg E 幻 X). Let g be continuous on [0, T]. 
H /q 끄(t — s)ff(s)ds E C4D(Z) 히?d Z J* 끄(t — s)g(s)ds is continuous in 
t E [0, T], then (1) has a unique solution on [0二7] with /(t, u) = g(t).

THEOREM 3. Set g(t) = f(i,u) for every u C X. Let g(£)E 21(C2) 
for t £ [0, T] and let C^gU) be mn打d浒은兩刼e in 十 £ [0^11 
Then (1) has a unique solution on [0, T] with /(/, u) = g(t).

3. Semilinear abstract Cauchy problem
Throughout this section, let {S(t)\t > 0} be an exponentially 

bounded C-semigroup in X with |S(t)| < Meat and Z its generator. 
Let T(i) = C~1S(t) be the operator defined by (2).

We give a property of a solution of (1) on [0, T] by the similar method 
of the proof in [2].

Proposition 4. Let f(t,u) e R(C") fort e [0,T] and ue X with 
C~lf(t^u) is continuous in (t^u) G [0,T] x X. If u(t) is a solution of 
(1) on [0,T] for u0 e C2D(Z\ then

(6) u(t) = 꼬+ / T(t — s)f(s,u(s)ds
Jo

for t e [0,T].

DEFINITION 5. A continuous function u(t) : [0,T] x X is called a 
mild solution of (1) on [05 T] if u(t) is satisfied by (6).
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Theorem 6. Let /(t,u) € R(C2) for t E [0,T] and u € X. Let 
C~1/(i,u) be continuous in t G [0,T] and Lipschitz continuous in 
u E X with its Lipschitz constant L. Then (1) has a unique mild 
solution u(t) on [0, T] for uq G C호]。(Z). Moreover, let u(t), v(t) be 
mild solutions of (1) for uq^vq G C2D(Z), respectively. Then

[u(t) 一 v(t)l < KjC^uo 一 C-^ol

for some constant K > 0.

Proof :. Let uq € C2Z>(Z). Set C = C([0二Z];X). We define an 
operator J : C —> C by

(Ju)(t) = T(t)uo + / T(t — 5)/(3,U(S))d3 
Jo

for u EC. Then, every u, v G C,

1(儿)(t)—(而)(圳 < / |S(圳 |CTf(S,U(S)) — 戒 s))|ds
Jo

< LMeaTt\u — 이8・

Thus

!oo,

I Ju — J이 8 W LMeatT\u — 이 8, 

where |u|oo < suPo<t<r l”(*)l・ Similarly we have for n > 2 and u, v G C, 

\JnU - 尸이8 < Qf 广 柯 - V

Thus Jn has a fixed point in C for sufficiently large n such that 
(乙 MS1 흐/)” .
-------- j------- V L Therefore J has a fixed point u in C and thus u(i) 
is a miid solution of (1) on [0,T] for u0 E C2D(Z).

Let u(t), v(i) be mild solutions of (1) on [0, T] for uq^vq G C2D(Z), 
respectively. Then

|u(/) - v(t)\ < Me^lC-^o - C-^ol + / 柯(s)— 讽s)|ds 
Jo

for t E [0, T]. From GronwalPs inequality, we have (7).

By the similar method as Theorem 6, we have the following result.
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PROPOSITION 7. Under the assumptions as in Theorem 6, the In
tegra/ equation

U(t) = I(t) + / 꼬(t 一 5)/(3, U(5))ds 
Jo

has a unique solution for every continuous function I(t) on [0,7]

Theorem 8. Let /(i, tz) e K(C3) forte [0,7% u E X, and 
C~3f(t^u) continuously differentiable in (<,u) E [0,T] x X. Then for 
every Uq E C2D(Z), a mild solution of (1) is a solution of (1) on [0, T],

Proof:. Let u(t) be a mild solution of (1) on [0, T] for uQ € C2D(Z). 
Then

(8) 叩) = 꼬(匕)曲 + / 꼬(t 一 s)f(s,u(s))ds.
Jo

Set A(i) = 으"

ft Q
•I(t) = T(t)/(0, «o) + ZT{t)u0 + / T(t - s)—f(s, u(s))ds 

Jo Os

and g(t)u) = A(t)u for t £ [0, T] and u £ X・ Then g(t、u) is continuous 
in t € [0, 꼬] and Lipschitz continuous in u G X, and Z(t) is continuous 
in i G [0, T]. Moreover, g(ty u) E R(C2) for (ty u) e [0, T] x X. It 
follows from Proposition 7 that the integral equation

讽 *) = 10) + f 꼬(J s)9(s, v(s))ds
Jo

has a unique continuous solution on [0,T]. From the continuous differ
entiability of we have

a
f(s, u(s + h、)、) - y(s, u(s)) = u)(u(s + /i) - u(s)) + q(s, h), 

uu

and
a

f(s + h, u(s + 方))-y(s, u(s + 方))=—/(s, u(s + K))h + e2(-s, h), 
OS
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where 罰타(s, h)| —> 0 as h 0 xinifbrmly on [0, T] for i = 1,2. Set

V&(<) = i(u(t + 九)一 u(t)) 一 v(t). 
ft

Then

(9) vh(t) = €h+ [ T(t- s)g(s,u"s))ds,
Jo

where

書') = — (T(i + /t)uo — 꼬(圳如) 一 Z끄(t)?如

小 1 产
成지 = £ / 戏t — s)(€i(sjz) + 顼$0))妃

« Jq

43)= / 邛 一 이餐六纨 “(S + 时)~ 으財(s’ u(s))ds, 

£ 시，T(t + h- s)f (s, u(s))ds — T(t)/(0, no)-

It follows that lim^_+o £)= 0 fb호 ? = 1,2,3,4 and thus 1血儿项 学 = 0. 
Set

K = max{QT4(s)| \0<s< T}.

Then from (9),

|vfc(t)| < I티 + KMeaT，欧(s)|ds.

By Gronwall's inequality,

\vk(t)\ < I히/"
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and thus limh_0 = 0. Therefore u(t) is differentiable on [0, T] 
du *

and — = v(t). Since v(t) is continuous in f € [0二「L "(*) is continu- dt
ously di任erentiable in t € [0,T] and 了is also continuously 
differentiable. From Theorem 3, the initial problem

§8(t) = Zw(t) + f(t, U(t)), 
at
w(0) = Uq

has a unique solution w(t) on [0,T] satisfying

(10) w(t) — T(t)u0 + I T(t — 5)/(5, u(s))d& 
Jo

From (8) and (10), u(t) = w(i) on [0,T]. Therefore u(<) is a solution 
of (1) on [O’꼬].

Fbr an application, let C be a bijective bounded linear operator 
from X onto itself. Let {S(t)|4 > 0) be an exponentially bounded 
(7-semigroup in X with |S(圳 < Meat.

D(Z) with a norm | ・ \z defined by \u\z = |씨 + \Zu\ for every 
u € D(Z) is a Banach space. Let Cz、S^(t) be the restrictions of 
G S(t) on P(Z), respectively. Since CkD(Z) = D(Z) for A: = 1,2, 
and S(t)u E D(Z) for every u E Z?(Z), Cz is a bijective bounded linear 
operator from Z)(Z) onto itself and {Sz(t)\t > 0) is an exponentially 
bounded (7^-semigroup in. D(Z) with |Sz(t)|z W Meat.

Theorem 9. Let C-1y(^,u): [0,T] x £)(Z) —> D(Z) be continuous 
in t and Lipschitz continuous in u. Then (1~) has a unique solution on 
[0,T] for every uQ £ D(Z).

Proof :. From Theorem 6* (1) has a unique mild solution. u(f) on 
[0, T] for every uq G -D(Z) satisfying 

u(t) = T(t)u0 + I T(t-S)/(5,U(5))d5 

0

in D(Z). Since /(t, u(/)) is continuous int E [0, T\ in」D(Z), Zf(t, u(0) 
is also continuous in Z £ [0二口 in X. Thus

「꼬Q - s)了(s,u(s))ds e C4D(Z)
Jo
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and — s，f(s,u(s))ds is continuous in t G [0,T] in X・ From
Theorem 2, (1) has a unique solution on [0,T] for every G D(Z).
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