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SEMILINEAR ABSTRACT CAUCHY PROBLEM
ASSOCIATED WITH AN EXPONENTIALLY
BOUNDED C-SEMIGROUP IN A BANACH SPACE

K1 Six HAa AND YEroL JE CHO

i. Introduction
The purpose of this paper is to consider the initial value problem

D ult) = Zu(h) + f(u(t), >0
u(0) = ug

in a Banach space X, where Z is the generator of an exponentally
bounded C-semigroup in X, f(t,u):{0,7] x X — X and up € X.

Davies-Pang [1] showed that (1) with f(¢,1) = 0 has a unique solu-
tion when T = oo and Ha [2] with f(t,u) = f(¢) when T < co under
some assumptions.

One may refer to Pazy [3] for (1) associated with a Cp semigroup in
X.

In 2, we recall definitions and chracterizations for an exponentially
bounded C-semigroup given in {1], [2] which we need. In 3, we are
concerned with existence and uniqueness of solutions of (1).

(1)

2. Preliminaries

Let X be a Banach space and let C be an injective linear oper-
ator from X into itself with dense range R(C) in X. We say that
{S(¢)|t > 6} is an exponentially bounded C-semigroup in X if it is
a strongly continuous family of bounded linear operator from X into
itself satisfying

(al) S(O) = Ca

(az) S+ 3)C = S(t)S(s) fort,s 2 0,

(a3) there exist constants M > 0 and a > 0 such that |S(t)] < Me*!
fort > 0.
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It follows that S(t)C = CS(t) and for z € R(C), S(t)z € R(C},
C~1S(t)z = S(t)C~'z. Let T(t) be the closed linear operator defined
by

(2) T(t)z = C71S(t)x

for z € D(T(t)) = {z € X|S(t)z € R{c)}. Then R(C) C D(T(t)) and
(b) T(O)z =z forz € X,
(b2) T(t+ s)z = T(t)T(s)x for x € R(C?),
(b3) T(t)z is continuous in ¢t > 0 for z € R(C?).
Let A > a. We define the bounded linear operator Ly from X into
itself by

L)‘z=[ e~ S(t)rdt

v v

for + € X. Then Ly with X > a is injective and (A — L7'C)z is
independent of A > a for z € X with Cx € R(Ly). Set Zz = (A —
L{'C)x for x € D(Z) = {z € X|Cz € R(L,)} with A > a. Then Z is
called the generator of {S(t)|t > 0} with |S(t)] < Me®f and we have

(3) (/\ - Z)_IC:E = Lyz and Lyz € D(Z)

for € X and XA > a. If C is bijective, then C*D(Z) = D(Z) (k =
0,1,2,---), where C° = I (the identity), C* = CC*~! and C*D(Z) =
{C*z € X|z € D(2)} for k=1,2,--.

The generator Z is densely defined in X and S(¢)z € D(Z),

(4) %S(t)x = ZS(t)x = S(t)Z=
for z € D(Z). Furthermore T(t}z € D(Z) and
(5) %T(t)x =2T(t)z =T(t)Zz

for z € CD(Z).
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DEFINITION 1. A function u(t) : [0,T] — X is called a solution of
(1) on [0, T if the the following (c;)-(c4) are satisfied :

{c1) u(t) is continuous on ¢ € [0, 7],

(e2) u(t) is continuously differential in ¢ € [0, T,

(c3) u(t) € D(Z)for t € (0,T),

(cs) (1) holds where T < co.

From the same method as in {2}, we have two theorems :

THEOREM 2. Set g(t) = f(t,u) for every u € X. Let ¢(t) € R(C)
for t € [0,T) with C~'g € L'(0,T; X). Let g be continuous on [0, T].
If [ T(t —s)g(s)ds € C*D(Z) and Z [, T(t — s)g(s)ds is continuous in
t € [0,T], then (1) has a unique solution on [0,T| with f(t,u) = ¢(t).

THEOREM 3. Set g(t) = f(t,u) for every u € X. Let g(t) € R(C?)
fort € [0,T] and let C~1g(t) be continuously differentiable in t € [0, T
Then (1) has a unique solution on [0, T| with f(t,u) = ¢(t).

3. Semilinear abstract Cauchy problem

Throughout this section, let {S(¢)|t > 0} be an exponentially
bounded C-semigroup in X with |S(¢)| < Me®* and Z its generator.
Let T(t) = C~15(t) be the operator defined by (2).

We give a property of a solution of (1) on [0, T'] by the similar method
of the proof in {2].

PROPOSITION 4. Let f(t,u) € R(C?) fort € [0,T] and u € X with

C~'f(t,u) is continuous in (t,u) € [0,T} x X. If u(t) is a solution of
(1) on [0, T} for uy € C2D(Z), then

(6) u(t) = T(t)ue + [) T(t — s)f(s,u{s)ds

fort € [0,T}.

DEFINITION 5. A continuous function u(t) : [0,T] X X is called a
mild solution of (1) on [0, T} if u(t) is satisfied by (6).
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THEOREM 6. Let f(t,u) € R(C?) fort € [0,T] and u € X. Let
C~1f(t,u) be continuous in ¢ € [0,T) and Lipschitz continuous in
v € X with its Lipschitz constant L. Then (1) has a unique mild
solution u(t) on {0,T] for ug € C?D(Z). Moreover, let u(t),v(t) be
mild solutions of (1) for ugy,ve € C?*I)Z), respectively. Then

u(t) — v(t)] < KIC™"ug ~ C ™ vo]
for some constant K > 0.

Proof :. Let ug € C?*D(Z). Set C = C([0,T); X). We define an
operator J : C ~+ C by

(Ju)(t) = T(t)uo + [0 T(t — s)f(s,u{s))ds

for u € C. Then, every u,v € C,

I(Ju)(2) — (Jo)(B)] < / IS IC (5, u(s)) — C f(s,0(s))ds
< LMe*Ttju — v|oo.
Thus
[Ju — Jvjoo < LMe™ Tt — v|co,

where |uloo < supgcicr [u(t)|. Similarly we have forn > 2and u,v € C,

sTr\n
{J % — J"]e < giir:-]"{%!-—le]u — Voo-

Thus J® has a fixed point in C for sufficiently large n such that
(LMe*TT)™ . .
< 1. Therefore J has a fixed point u in C and thus u(?)

is a mild solution of (1) on [0,7) for uo € C2D(2).
Let u{t), v(t) be mild solutions of (1) on [0, T for ug,vs € C*D(Z),
respectively. Then

|u(t) — v(t)] < Me*TIC  ug — CLup| + /; fu(s) — v(s)|ds

for ¢ € [0,T). From Gronwall’s inequality, we have (7).

By the similar method as Theorem 6, we have the following result.
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PROPOSITION 7. Under the assumptions as in Theorem 6, the in-
tegral equation

u(t) = I(t) + /o T(t — s)f(s,u(s))ds

has a unique solution for every continuous function I(t) on [0, T}.

THEOREM 8. Let f(t,u) € R(C*) for t € (0,7}, v € X, and
C~3f(t,u) continuously differentiable in (t,u) € [0,T} x X. Then for
every ug € C*D(Z), a mild solution of (1) is a solution of (1) on [0, T).

Proof :. Let u(t) be a mild solution of (1) on [0, T] for ug € C?D(Z).
Then

(8) u(t) = T(t)up +/; T(t — s)f(s,u(s))ds.

Set A(t) = 5‘9;0-1 f(t,u),

¢
a
I() = T(OF(O0,10) + ZT(Ouo + [ T(t = 5) 52 (s, u(s))ds
0
and ¢(t,u) = A(t)u fort € [0, T) and u € X. Then g{¢,u) is continuous
in ¢ € [0, T| and Lipschitz continuous in « € X, and I(t) is continuous

in t € [0,7]. Moreover, g(t,u) € R(C?) for (¢{,u) € [0,T] x X. It
follows from Proposition 7 that the integral equation

v(t) = I(t) + j; T(t — s)g(s,v(s))ds

has a unique continuous solution on [0,7]. From the continuous differ-
entiability of f(t,u), we have

sy + B)) = Flo,u(s)) = o fGs, wl(u(s + ) = u(s)) + s, ),

and

£(s + hyu(s + B)) ~ fls,uls + R)) = 2 f(s,u(s + WA+ s, ),
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where 1|ei(s, k)] = 0 as h — 0 uniformly on [0, 7] for ¢ = 1,2. Set
1
h(8) = H(ut + B) = u(t)) — o(8)
Then
t
9) on(t) = e + j T(t — 5)g(s, va(s))ds,
0
where

en =+ 4 e+,

M = %(T(t + h)ug — T(t)uo) — ZT(t)uo,
9= [ It~ s)(er(s, B) + (s, B))ds,
0
¢ a d
&0 = [T~ g s, uts + W) = 3o o uls))de

and

k
&0 = % [ T+ b= )5, u(shds - T, o)

It follows that lims_.g er) =0for:=1,2,3,4 and thus lims_qex = 0.
Set
K =max{|C'A(s)] [0 <5 < T}.

Then from (9),

t
loa(t)] < leal + K MeT / (on(s)|ds.
0
By Gronwall’s inequality,

lon ()} < lenfeETMe”
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and thus limy_.o va(¢) = 0. Therefore u(t) is differentiable on {0, T
d «
and — = v(t). Since v(t) is continuous in ¢t € [0,T], u(¢) is continu-

dt
ously differentiable in ¢ € [0,7] and C™! f(t,u(t) is also continuously
differentiable. ¥From Theorem 3, the initial problem

d
{ () = Zu(®) + f(t,u(®)),
w(0) = up

has a unique solution w(t) on [0, T] satisfying

(10) w(t) = T()uo + /0 T(t — 5)f(s, u(s))ds.

From (8) and (10), u(¢) = w(t) on [0,T}. Therefore u{t} is a solution
of (1) on [0, T].

For an application, let C be a bijective bounded linear operator
from X onto itself. Let {S(¢}{¢ > 0} be an exponentially bounded
C-semigroup in X with |S(¢)] < Me"'.

D(Z} with a norm | - |z defined by |ulz = |u] + [Zu] for every
v € D(Z) is a Banach space. Let Cz, Sz(%) be the restrictions of
C,S5(t) on D(Z), respectively. Since C¥D(Z) = D(Z) for k =1,2,---
and S(t)u € D(Z) for every u € D(Z), Cz is a bijective bounded linear
operator from D(Z) onto itself and {Sz(¢)|t > 0} is an exponentially
bounded Cz-semigroup in D(Z) with |Sz(t)|z < Me®.

THEOREM 9. Let C7'f(¢,u) :{0,T} x D(Z) — D(Z} be continuous
in ¢t and Lipschitz continuous in . Then (1) has a unique solution on
{0, T] for every uy € D(Z).

Proof :. From Theorem 6, (1) has a unique mild solution u(t) on
[0, T for every uo € D{Z) satisfying

u(t) = T(t)uo + /0 T(t — 5)f(s, uls))ds

in D(Z). Since f(t,u(t)) is continuous in ¢t € [0, T} in D(Z), Z f(t, u(t))
is also continuous in ¢ € [0,T] in X. Thus

fo T(t — ) (s, u(s))ds € C*D(Z)
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and qut T(t — s)f(s,u(s))ds is continuous in ¢ € [0,7]} in X. From
Theorem 2, (1) has a unique solution on {0, T for every uq € D(Z).
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