ON SEQUENTIAL HAUSDORFF COMPACTIFICATION SATISFYING THE FIRST AXIOM OF COUNTABILITY

SEONHEE KWEON AND WOO CHORL HONG

It is well known that any metrizable space admits a sequential Housdorff compactification [2]. The purpose of this paper is to obtain a condition for a Hausdorff space satisfying the first axiom of countability to have a sequential Hausdorff compactification satisfying the first axiom of countability. Some steps of the construction of sequential Hausdorff compactifications in this paper are inspired by Wu [4]. All spaces in this paper are assumed to be Hausdorff satisfying the first axiom of countability. Let X be a topological space, $\{X_p \mid p = 1, 2, \dots, k\}$ a finite family of spaces, and $\mathcal{A} = \{f_p | f_p : X \longrightarrow X_p \text{ is continuous,} p = 1, 2, \dots, k\}$. We call a sequence (x_n) in X an \mathcal{A} -sequence in X if $(f_p(x_n))$ has a cluster point, for each $p = 1, 2, \dots, k$.

PROPOSITION 1. Let X is sequentially compact if and only if

- (1) $f_p(X)$ is contained in a sequential compact subset C_{f_p} for each $f_p \in \mathcal{A}$, and
- (2) every A-sequence in X has a cluster point in X.

Proof. Necessity is obvious. To prove sufficiency, let (x_n) be a sequence in X. Then, by (1), $(f_p(x_n))$ has a cluster point in X_p for each $f_p \in \mathcal{A}$, and so, (x_n) is an \mathcal{A} -sequence in X. Thus, (x_n) has a cluster point in X by (2).

LEMMA. Let E and F be subspaces of X with $E \subset F \subset Cl_X(E)$, where $Cl_X(E)$ is the closure of E in X. If X has the weak topology induced by \mathcal{A} , then the following statements are equivalent.

- (1) Every A-sequence in E has a cluster point in F.
- (2) Every A-sequence in F has a cluster point in F.

Proof. To prove $(1) \Rightarrow (2)$, let (y_n) be an \mathcal{A} -sequence in F. Then $(f_p(y_n))$ has a cluster point z_p in X_p , for each $f_p \in \mathcal{A}$. So there

Received December 13, 1991.

exists a subsequence $(f_p(y_{p(i)}))$ of $(f_p(y_n))$ such that $(f_p(y_{p(i)}))$ converges to z_p , for each $f_p \in \mathcal{A}$. Since $F \subset \operatorname{Cl}_X(E)$, for each $y_{p(i)}$, there exists a sequence $(x_{p(i)}^m)$ in E such that $(x_{p(i)}^m)$ converges to $y_{p(i)}$. By continuity of f_p , $(f_p(x_{p(i)}^m))$ converges to $f_p(y_{p(i)})$. Let $B_p =$ $\{f_p(x_{p(i)}^m) \mid m, i \in N\}$. Then $f_p(y_{p(i)}) \in \operatorname{Cl}_{X_p}(B_p)$, for each *i*, and hence we have $z_p \in \operatorname{Cl}_{X_p}(B_p)$. Thus there exists a sequence $(f_p(x_p^n))$ in B_p such that $(f_p(x_p^n))$ converges to z_p , for each $p = 1, 2, \dots, k$. Let (l_r) be the sequence such that $l_1 = x_1^1, l_2 = x_2^1, \cdots, l_k = x_k^1$ $l_{k+1} = x_1^2, \cdots, l_{2k} = x_k^2, \cdots$. Then (l_r) is a sequence in E and we see that $(f_p(l_r))$ has a cluster point z_p , for each $f_p \in \mathcal{A}$. So (l_r) is an \mathcal{A} sequence in E. By (1), (l_r) has a cluster point x in F. Then it is easily verified that for some p_0 , there exists a subsequence $(x_{p_0}^{n(j)})$ of $(x_{p_0}^n)$ such that $(x_{p_0}^{n(j)})$ converges to x. It follows that $(f_{p_0}(x_{p_0}^{n(j)}))$ converges to $(f_{p_0}(x))$. Since $(f_{p_0}(x_{p_0}^n))$ converges to z_{p_0} and $(f_{p_0}(x_{p_0}^{n(j)}))$ is a subsequence of $(f_{p_0}(x_{p_0}^n)), (f_{p_0}(x_{p_0}^{n(j)}))$ converges to z_{p_0} . By Hausdorffness of X_{p_0} , we have $f_{p_0}(x) = z_{p_0}$. Consequently, we have that $(f_{p_0}(y_{p_0(i)}))$ converges to $f_{p_0}(x)$. Since X has the weak topology induced by \mathcal{A} , $(y_{p_0(1)})$ converges to x. Therefore, (y_n) has a cluster point x in F.

The converse is trivial, and hence the proof is complete.

PROPOSITION 2. Let E and F be subspaces of X with $E \subset F \subset Cl_X(E)$. If X has the weak topology induced by A, then F is sequentially compact if and only if

- (1) $Cl_{X_p}(f_p(E))$ is sequentially compact for each $f_p \in A$, and
- (2) every \mathcal{A} -sequence in E has a cluster point in F.

Proof. We assume that F is sequentially compact. Then $f_p(F)$ is sequentially compact by continuity of f_p , for each $f_p \in \mathcal{A}$. Since every sequential compact subset of a Hausdorff space satisfying the first axiom of countability is closed (See [1], p.230),

$$\operatorname{Cl}_{X_p}(f_p(E)) \subset \operatorname{Cl}_{X_p}(f_p(F)) = f_p(F).$$

And since every closed subspace of a sequential compact space is sequentially compact (See [1], p.230), $\operatorname{Cl}_{X_p}(f_p(E))$ is sequentially compact for each $f_p \in \mathcal{A}$. Thus (1) is proved. (2) is followed by Proposition 1 and Lemma. Conversely, since

$$f_p(F) \subset f_p(\operatorname{Cl}_X(E)) \subset \operatorname{Cl}_{X_p}(f_p(E)),$$

 $f_p(F)$ is contained in a sequential compact subset $\operatorname{Cl}_{X_p}(f_p(E))$ by (1), for each $f_p \in \mathcal{A}$. By (2) and Lemma, every \mathcal{A} -sequence in F has a cluster point in F. Thus F is sequentially compact by Proposition 1.

Let $S = \{(x_n) \mid (x_n) \text{ is a sequence in } X \text{ such that } (f_p(x_n)) \text{ converges in } X_p, \text{ for each } f_p \in \mathcal{A}\}.$ Define a relation \simeq on S by $(x_n) \simeq (y_n)$ if and only if $\lim(f_p(x_n)) = \lim(f_p(y_n))$ for each $f_p \in \mathcal{A}$. It is trivial that this relation \simeq is an equivalence relation on S. Let $X^*(\mathcal{A})$ be the quotient set of S by \simeq , and $[(x_n)] \in X^*(\mathcal{A})$ the equivalence class containing (x_n) . And, for each $f_p \in \mathcal{A}$, define a mapping f_p^* on $X^*(\mathcal{A})$ into X_p by $f_p^*([(x_n)]) = \lim(f_p(x_n))$ for each $f_p \in \mathcal{A}$. Then, clearly, f_p^* is well-defined and injective. Now we denote by $\mathcal{A}^* = \{f_p^* \mid f_p \in \mathcal{A}\}$. Hereafter, we assume that $X^*(\mathcal{A})$ has the weak topology induced by \mathcal{A}^* . Then we call a sequence (α_n) in $X^*(\mathcal{A})$ an \mathcal{A}^* -sequence in $X^*(\mathcal{A})$ if $(f_p^*(\alpha_n))$ has a cluster point in X_p , for each $f_p^* \in \mathcal{A}^*$. Then we have the following:

PROPOSITION 3. \mathcal{A}^* is a Hausdorff space satisfying the first axism of countability.

Proof. We first show that $X^*(\mathcal{A})$ is Hausdorff. Let $\alpha \neq \beta$ in $X^*(\mathcal{A})$ Then $f_p^*(\alpha) \neq f_p^*(\beta)$ for some $f_p^* \in \mathcal{A}^*$. Since X_p is Hausdorff, there are disjoint open nbds U and V of $f_p^*(\alpha)$ and $f_p^*(\beta)$ in X_p , respectively. Hence we have disjoint open nbds $f_p^{*-1}(U)$ and $f_p^{*-1}(V)$ of α and β in $X^*(\mathcal{A})$, respectively.

To prove that $X^*(\mathcal{A})$ satisfies the first axiom of countability, let $\alpha \in X^*(\mathcal{A})$. Then $f_p^*(\alpha) \in X_p$ for each $f_p^* \in \mathcal{A}^*$. Since X_p satisfies the first axiom of countabality for each p, there is a countable local base \mathcal{B}_p of $f_p^*(\alpha)$ for each p. Then, let $\mathcal{B} = \bigcup_{p=1}^k \{f_p^{*^{-1}}(U_p) \mid U_p \in \mathcal{B}_p\}, \mathcal{B}$ forms a countable local base of α in $X^*(\mathcal{A})$. For, let V be an open nbd of α . Since $X^*(\mathcal{A})$ has the weak topology induced by \mathcal{A}^* , there is an open nbd V_p of $f_p^*(\alpha)$ such that $f_p^{*^{-1}}(V_p) \subset V$. So, there is an element U_p of \mathcal{B}_p with $f_p^*(\alpha) \in U_p \subset V_p$. It follows that $\alpha \in f_p^{*^{-1}}(U_p) \subset f_p^{*^{-1}}(V_p) \subset V$. Hence $X^*(\mathcal{A})$ satisfies the first axiom of countability.

Now we define a mapping $e: X \longrightarrow X^*(\mathcal{A})$ by e(x) = [(x)] for each $x \in X$, where (x) is the constant sequence in X whose n-th term is x for all indices $n \in N$. Then, clearly, e is injective.

PROPOSITION 4. e is a dense embedding if and only if X has the weak topology induced by A.

Proof. If e is a dense embedding, then e(X) is homeomorphic to X, and hence for each open set U in X, $e(U) = e(X) \cap V_U$ for some open set V_U in $X^*(\mathcal{A})$. Since $X^*(\mathcal{A})$ has the weak topology induced by \mathcal{A}^* , we can represent V_U as the union of some basic open sets in $X^*(\mathcal{A})$, let $V_U = \bigcup_{i \in I} f_{p_i}^{*^{-1}}(U_{p_i})$, where $p_i = 1, 2, \cdots k$ and U_{p_i} is open in X_{p_i} . Since $f_p = f_p^* \circ e$ for each p, we have

$$U = e^{-1} \circ e(U) = e^{-1}(e(X) \cap \bigcup_{i \in I} f_{p_i}^{*^{-1}}(U_{p_i}))$$

= $X \cap e^{-1}(\bigcup_{i \in I} f_{p_i}^{*^{-1}}(U_{p_i})) = e^{-1}(\bigcup_{i \in I} f_{p_i}^{*^{-1}}(U_{p_i}))$
= $\bigcup_{i \in I} e^{-1}(f_{p_i}^{*^{-1}}(U_{p_i})) = \bigcup_{i \in I} f_{p_i}^{-1}(U_{p_i})$

Thus, X has the weak topology induced by \mathcal{A} .

Conversely, we assume that X has the weak topology induced by \mathcal{A} . First, we show that e is continuous. Let (x_n) be a sequence in X such that (x_n) converges to $x \in X$. Since $f_p = f_p^* \circ e$ for each p,

$$\lim f_{p}^{*}(e(x_{n})) = \lim f_{p}(x_{n}) = f_{p}(x) = f_{p}^{*}(e(x))$$

for each p, and so $(f_p^*(e(x_n)))$ converges to $f_p^*(e(x))$ for each p. Since $X^*(\mathcal{A})$ has the weak topology induced by \mathcal{A}^* , $(e(x_n))$ converges to e(x), and thus e is continuous. Next, to show that e(X) is dense in $X^*(\mathcal{A})$, let $[(x_n)] \in X^*(\mathcal{A})$. Then, clearly, $(f_p^*(e(x_n)))$ converges to $f_p^*([(x_n)])$, and since $X^*(\mathcal{A})$ has the weak topology induced by \mathcal{A}^* , we have that $(e(x_n))$ converges to $[(x_n)]$. Thus $[(x_n)] \in \operatorname{Cl}_{X^*(\mathcal{A})}(e(X))$. Finally, we show that e is an open mapping from X onto e(X). Since X has the weak topology induced by \mathcal{A} , we have that $e^{-1} : e(X) \longrightarrow X$ is continuous if and only if $f_p \circ e^{-1}$ is continuous for each p (See [3], p.56). Since $f_p \circ e^{-1} = f_p^*$ for each p, e^{-1} is continuous.

168

PROPOSITION 5. Every \mathcal{A}^* -sequence in $X^*(\mathcal{A})$ has a cluster point in $X^*(\mathcal{A})$.

Proof. Let (α_n) be an \mathcal{A}^* -sequence $X^*(\mathcal{A})$. Then, by definition of \mathcal{A}^* -sequence, $(f_p^*(\alpha_n))$ has a cluster point z_p in X_p for each $f_p^* \in \mathcal{A}^*$, and so there exists a subsequence $(\alpha_{p(i)})$ of (α_n) such that $(f_p^*(\alpha_{p(i)}))$ converges to z_p for each p. Since $\alpha_{p(i)} \in X^*(\mathcal{A})$ for each p(i), there exists an element $(x_{p(i)}^m)$ of S such that $\alpha_{p(i)} = [(x_{p(i)}^m)]$ for each p(i). It follows that $(f_p(x_{p(i)}^m))$ converges to $f_p^*(\alpha_{p(i)})$ for each p. Let $B_p = \{f_p(x_{p(i)}^m) \mid m, i \in N\}$. Then $f_p^*(\alpha_{p(i)}) \in \operatorname{Cl}_{X_p}(B_p)$ for each p, and hence we have $z_p \in \operatorname{Cl}_{X_p}(B_p)$. Thus there exists a sequence $(f_p(x_p^m))$ in B_p such that $(f_p(x_p^m))$ converges to z_p for each p. Let (l_r) be the sequence in X such that $l_1 = x_1^1, l_2 = x_2^1, \cdots, l_k = x_k^1, l_{k+1} = x_1^2, \cdots, l_{2k} = x_k^2, l_{2k+1} = x_1^3, \cdots$. Then, as the same technique in Lemma, there is a subsequence $(x_{p_0}^{n(j)})$ of $(x_{p_0}^n)$ such that $(f_{p_0}(x_{p_0}^{n(j)}))$ converges to z_{p_0} , for some p_0 . Thus we have that

$$f_{p_0}^*([(x_{p_0}^{n(j)})]) = \lim f_p(x_{p_0}^{n(j)}) = z_{p_0} = \lim f_{p_0}^*(\alpha_{p_0(i)}).$$

Since X^* has the weak topology induced by \mathcal{A}^* , $(\alpha_{p_0(i)})$ converges to $[(x_{p_0}^{n(j)})]$, and therefore, (α_n) has a cluster point $[(x_{p_0}^{n(j)})]$.

PROPOSITION 6. $X^*(\mathcal{A})$ is sequentially compact if and only if $Cl_{X_p}(f_p(X))$ is sequentially compact for each $f_p \in \mathcal{A}$.

Proof. By Proposition 2 and 5, $X^*(\mathcal{A})$ is sequentially compact if and only if $\operatorname{Cl}_{X_p}(f_p^*(X^*(\mathcal{A})))$ is sequentially compact for each $f_p^* \in \mathcal{A}^*$. Since

$$f_p^*(X^*(\mathcal{A})) = f_p^*(\operatorname{Cl}_{X^*(\mathcal{A})}(e(X))) \subset \operatorname{Cl}_{X_p}(f_p^*(e(X))) = \operatorname{Cl}_{X_p}(f_p(X))$$

and

$$f_p(X) = f_p^*(e(X)) \subset f_p^*(X^*(\mathcal{A})),$$

we have $\operatorname{Cl}_{X_p}(f_p^*(X^*(\mathcal{A}))) = \operatorname{Cl}_{X_p}(f_p(X))$ for each p. Thus $X^*(\mathcal{A})$ is sequentially compact if and only if $\operatorname{Cl}_{X_p}(f_p(X))$ is sequentially compact for each $f_p \in \mathcal{A}$.

By Proposition 3, 4 and 6, we have our main result.

THEOREM. $X^*(\mathcal{A})$ is a sequential Hausdorff compactification satisfying the first axiom of countability of a Hausdorff space X satisfying the first axiom of countability if and only if

- (1) $Cl_{X_p}(f_p(X))$ is sequentially compact for each $f_p \in A$, and
- (2) X has the weak topology induced by A.

EXAMPLE. Let R be the real line with the usual topology and X = [0,1). Define $f: X \longrightarrow R$ by f(x) = x for all $x \in X$. Then, clearly, X has the weak topology induced by $\{f\}$ and $\operatorname{Cl}_R(f(X)) = [0,1]$ is sequentially compact. Since $S = \{(x_n) \mid (x_n) \text{ is a sequence in } X \text{ with } (x_n) \text{ converges in } R\}$ and $X^*(\{f\}) = \{[(x_n)] \mid (x_n) \text{ is a sequence in } X \text{ with } (x_n) \text{ converges in } X\} \cup \{[(x_n)] \mid (x_n) \text{ is a sequence in } X \text{ with } (x_n) \text{ converges in } X\} \cup \{[(x_n)] \mid (x_n) \text{ is a sequence in } X \text{ with } (x_n = 1 \text{ in } R\}, \text{ hence we have that } X^*(\{f\}) \text{ is homeomorphic to } [0,1] \text{ by the homeomorphism } h: X^*(f) \longrightarrow [0,1] \text{ defined by } h([(x_n)]) = \lim x_n \text{ in } R.$ Therefore, $X^*(\{f\})$ is homeomorphic to the one-point compactification of X.

References

- 1. J. Dugungji, Topology, Allyn and Bacon, Boston, 1966
- 2. T. M. Ruiz Sancho, On sequentially compact T_2 compactifications, Top. & its App. 13 (1982), 177-189.
- 3. S. Willard, General Topology, Addison-Wesley, Reading, Mass., 1970.
- H. J. Wu, Extensions and new observations of Tychonoff, Stone-Weierstrass Theorems, realcompactification, Top. & its App. 16 (1983), 107-116.

Department of Mathematics Pusan National University Pusan 609–735, Korea