COMPACT REAL HYPERSURFACES WITH PARALLELY CYCLIC CONDITION OF A COMPLEX PROJECTIVE SPACE

Yong-Soo Pyo

1. Introduction

Let $P_{n}(C)$ be an n-dimensional complex projective space with Fubini Study metric of constant holomorphic sectional curvature 4. In Takagi's study [8] of real hypersurfaces of $P_{n}(C)$, he proved that all homogeneous real hypersurfaces could be divided into six types which are said to be type A_{1}, A_{2}, B, C, D, and E.

In what follows an induced almost contact metric structure of a real hypersurface M of $P_{n}(C)$ is denoted by (ϕ, g, ξ, η). The structure vector ξ is said to be principal if $A \xi=\alpha \xi$, where A is the shape operator in the direction of the unit normal on M and $\alpha=\eta(A \xi)$. Real hypersurfaces of $P_{n}(C)$ have been studied by many differential geometers. ([1], [3], [4], [5], [6], [7], and [8] etc.) And one of them, Okumura [7] showed that M is of type A_{1} or A_{2} if and only if $A \phi=\phi A$. Furthermore. Maeda [6] proved that M is of type A_{1} or A_{2} if and only if

$$
g\left(\left(\nabla_{X} A\right) Y, Z\right)+\eta(Y) g(\phi X, Z)+\eta(Z) g(\phi X, Y)=0
$$

for any vector fields X, Y, and Z on M, where ∇ is the Riemannian connection with respect to g.

In this paper, we shall prove the following theorem.
Theorem. Let M be a compact real hypersurface with parallely cyclic condition of a complex projective space $P_{n}(C)$. Then M is locally congruent to one of the homogeneous hypersurfaces of type A_{1} or A_{2}.

2. Preliminaries

Let M be a real hypersurface of a complex projective space $P_{n}(C)$. Throughout the present paper the following convention on the range of indices are used, unless otherwise stated

$$
i, j, \cdots=1,2, \cdots, 2 n-1
$$

The summation convention will be used with respect to those system of indices.

For an almost contact metric structure (ϕ, g, ξ, η) on M, the following relations are given :

$$
\begin{align*}
\phi_{j}^{r} \phi_{r}^{h} & =-\delta_{j}^{h}+\xi_{j} \xi^{h}, \quad \phi_{j r} \xi^{r}=0 \tag{2.1}\\
\xi_{r} \phi_{j}^{r} & =0, \quad \xi_{j} \xi^{\prime}=1
\end{align*}
$$

Furthermore, the covariant derivative of the structure tensors are obtained by

$$
\begin{equation*}
\nabla_{j} \phi_{i}^{h}=-h_{j i} \xi^{h}+h_{j}^{h} \xi_{i}, \quad \nabla_{j} \xi_{i}=-h_{j r} \phi_{i}^{r} \tag{2.2}
\end{equation*}
$$

where ∇ is the Riemannian connection with respect to g and $A=\left(h_{j i}\right)$ denotes the shape operator with respect to the unit normal on M. Since $P_{n}(C)$ is of constant holomorphic sectional curvature 4, the Gauss and Codazzi equations are respectively given as follows :

$$
\begin{gather*}
R_{k j i h}=g_{k h} g_{j i}-g_{j h} g_{k i}+\phi_{k h} \phi_{j i}-\phi_{k i} \phi_{j h} \tag{2.3}\\
-2 \phi_{k j} \phi_{i h}+h_{k h} h_{j i}-h_{k i} h, h \\
\nabla_{k} h_{j i}-\nabla_{j} h_{k i}=\xi_{k} \phi_{j i}-\xi_{j} \phi_{k i}-2 \xi_{i} \phi_{k j} \tag{2.4}
\end{gather*}
$$

where $R_{k j i h}$ are the components of the Riemannian curvature tensor of M. Let S_{j} be the components of the Ricci tensor of M. Then the Gauss equation implies

$$
\begin{equation*}
S_{j z}=(2 n+1) g_{j i}-3 \xi_{j} \xi_{i}+h h_{j t}-h_{j i}^{2} \tag{2.5}
\end{equation*}
$$

where h is the trace of the shape operator A and $h_{j i}^{2}=h_{j r} h_{i}^{r}$.

3. Proof of the Theorem

Let M be a real hypersurface of a complex projective space $P_{n}(C)$. Then M is called parallely cyclic if $\nabla_{m} T_{k j 2}=3 a \nabla_{m} U_{k j i}$ (a is constant), where $T_{k j ı}=\nabla_{k} h_{j ı}+\nabla_{j} h_{k i}+\nabla_{\imath} h_{j k}, U_{k j ı}=\xi_{k} \xi_{j i}+\xi_{j} \xi_{k i}+\xi_{\imath} \xi_{j k}$ and $\xi_{j t}=\nabla, \xi_{i}+\nabla_{i} \xi_{j}$ (see [2]). From now on, we suppose that M is compact and of parallely cyclic.

From (2.2), we have

$$
\begin{equation*}
\nabla_{k} \nabla, \xi_{i}=\left(h_{j r} \xi^{r}\right) h_{k_{1}}-h_{j} k^{2} \xi_{t}-\left(\nabla_{k} h_{j r}\right) \phi_{i}^{\tau} \tag{3.1}
\end{equation*}
$$

Hence, the Laplacian $\Delta \xi_{i}$ of ξ_{i} is given by

$$
\begin{equation*}
\Delta \xi_{t}=h_{i} r^{2} \xi^{r}-h_{2} \xi_{z}-\left(\nabla_{r} h\right) \phi_{i}^{r} \tag{3.2}
\end{equation*}
$$

where $h_{2}=h_{g} h^{j i}$. Multiplying $\phi^{k i}$ to (2.4), by (2.1) and (2.2), we get

$$
\begin{equation*}
\left(\nabla_{k} h_{\jmath^{\prime}}\right) \phi^{k_{1}}=-\left(\phi_{k_{2}} \phi^{k_{2}}\right) \xi_{j}=-2(n-1) \xi_{j} . \tag{3.3}
\end{equation*}
$$

Thus, from (3.1) and (3.3), we obtan

$$
\begin{equation*}
\nabla^{m} \nabla_{\jmath} \xi_{m}=h h_{\jmath} \xi^{r}-h_{3} r^{2} \xi^{r}+2(n-1) \xi_{j} \tag{3.4}
\end{equation*}
$$

Since $\xi_{j m}=\nabla_{j} \xi_{m}+\nabla_{m} \xi_{j}$, we have

$$
\begin{equation*}
\nabla^{m} \xi_{j m}=h h_{j r} \xi^{r}-h_{2} \xi_{j}-\left(\nabla_{r} h\right) \phi_{j}^{r}+2(n-1) \xi_{j} \tag{3.5}
\end{equation*}
$$

by (3.2) and (3.4). Therefore

$$
\begin{equation*}
\xi^{j} \nabla^{m} \xi_{J m}=-h_{2}+2(n-1), \tag{3.6}
\end{equation*}
$$

where $\alpha=h_{j} \xi^{j} \xi^{i}$. Since M is of parallely cyclic and

$$
\begin{equation*}
\nabla_{m} T_{k j t}=3 \nabla_{m} \nabla_{k} h_{\jmath z}-3 \nabla_{m}\left(\xi, \phi_{t k}+\xi_{t} \phi_{\jmath k}\right) \tag{3.7}
\end{equation*}
$$

by (2.4), we obtain

$$
\begin{equation*}
\nabla_{m} \nabla_{k} h_{j 2}=\nabla_{m}\left(\xi_{j} \phi_{2 k}+\xi_{i} \phi_{j k}\right)+a \nabla_{m}\left(\xi_{k} \xi_{j 2}+\xi_{j} \xi_{k z}+\xi_{2} \xi_{j k}\right) . \tag{3.8}
\end{equation*}
$$

Applying $i=j$ to (3.7) and summing up with respect to j,

$$
\begin{equation*}
\nabla_{\boldsymbol{m}} \nabla_{\boldsymbol{k}} h=2 a \nabla_{\boldsymbol{m}}\left(\xi^{r} \nabla_{r} \xi_{k}\right) \tag{3.9}
\end{equation*}
$$

Hence, if we put $W_{\mathrm{t}}=h \nabla_{\mathrm{t}} h-2 a h \xi^{r} \nabla_{r} \xi_{\mathrm{t}}+\xi_{\mathrm{l}}\left(\nabla_{\mathrm{r}} h\right) \xi^{r}$, then we get

$$
\nabla^{i} W_{\imath}=\left\|\nabla_{t} h-2 a \xi^{r} \nabla_{r} \xi_{t}\right\|^{2}
$$

because $\nabla^{\imath} \xi_{2}=0$. Since M is compact, we obtain the following lemma by the Stoke's theorem.

Lemma. Under the hypothesis of the Theorem, we have

$$
\begin{equation*}
\nabla_{i} h=2 a \xi^{r} \nabla_{r} \xi_{\mathrm{t}} \tag{3.10}
\end{equation*}
$$

On the other hand, from (3.9), we obtain
(3.11) $a\left\{\left(\nabla_{j} \xi^{r}\right)\left(\nabla_{r} \xi_{t}\right)-\left(\nabla_{i} \xi^{r}\right)\left(\nabla_{r} \xi_{j}\right)+\xi^{r}\left(\nabla_{j} \nabla_{r} \xi_{j}-\nabla_{i} \nabla_{r} \xi_{j}\right)\right\}=0$.

Multiplying ξ^{i} to (3.11), and using (2.1), (2.2), and (3.1), we can know

$$
\begin{equation*}
a\left(\xi^{\imath} \nabla_{\imath} \xi^{r}\right)\left(\nabla_{r} \xi_{j}\right)=a\left\{\beta \xi_{j}-h_{j r}^{2} \xi^{r}+\xi^{t} \xi^{s}\left(\nabla_{t} h_{s r}\right) \phi_{j}{ }^{r}\right\}, \tag{3.12}
\end{equation*}
$$

where $\beta=h_{m r}^{2} \xi^{m} \xi^{r}$. And, by (2.2),

$$
\begin{equation*}
\left(\xi^{\imath} \nabla_{t} \xi^{r}\right)\left(\nabla, \xi_{r}\right)=h_{j r}^{2} \xi^{r}-\alpha h_{J r} \xi^{r} . \tag{3.13}
\end{equation*}
$$

From (2.2), we have

$$
\begin{align*}
\nabla_{m} \xi_{j i}=- & \left(\nabla_{m} h_{j r}\right) \phi_{i}^{r}-\left(\nabla_{m} h_{i r}\right) \phi_{j}^{r}+h_{m i} h_{j r} \xi^{r} \tag{3.14}\\
& +h_{m} h_{t r} \xi^{r}-h_{j m}^{2} \xi_{i}-h_{t m}^{2} \xi_{j} .
\end{align*}
$$

Hence, we obtain

$$
\begin{equation*}
\left(\nabla_{m} \xi_{j i}\right) \xi^{m} \xi^{1}=2 \alpha h_{\jmath r} \xi^{r}-h_{\jmath r}^{2} \xi^{r}-\beta \xi_{j}-\xi^{t} \xi^{s}\left(\nabla_{t} h_{s r}\right) \phi_{j}^{r} . \tag{3.15}
\end{equation*}
$$

From (2.3) and (2.5), we have
(3.16) $\left(S_{k r} h_{j}^{r}-R_{m k J r} h^{m r}\right) \xi^{k}=h h_{j r}{ }^{2} \xi^{r}+\left\{(2 n+1)-h_{2}\right\} h_{j r} \xi^{r}-h \xi_{,}$.

And, using the Ricci identity, we find

$$
\begin{align*}
\left(S_{k r} h_{j}^{r}\right. & \left.-R_{m k_{j} r} h^{m r}\right) \xi^{k}=2 \alpha \xi_{j}-h_{\jmath} \xi^{r}-h \xi_{j} \tag{3.17}\\
& -a\left\{2 \xi^{r}\left(\nabla_{r} \xi_{m}\right)\left(\nabla_{j} \xi^{m}\right)+\xi^{r}\left(\nabla_{r} \xi_{m}\right)\left(\nabla^{m} \xi_{j}\right)\right. \\
& \left.-\nabla^{m} \xi_{j m}+\xi^{k} \xi^{m} \nabla_{k} \xi_{j m}-\xi^{k} \xi_{j} \nabla^{m} \xi_{k m}\right\}
\end{align*}
$$

by (2.1), (2.2) and (3.8). Combining (3.16) and (3.17), and using (2.1), (2.2), (3.5), (3.6), (3.12), (3.13), and (3.15),

$$
\begin{align*}
h h_{j r}^{2} \xi^{r} & +\left(2 n-h_{2}\right) h_{j r} \xi^{r}-2 \alpha \xi_{j} \tag{3.18}\\
& =a\left[h h_{\boldsymbol{r}} \xi^{r}+\left\{h \alpha+4(n-1)-2 h_{2}\right\} \xi_{j}-\left(\nabla_{r} h\right) \phi_{J}^{r}\right] .
\end{align*}
$$

Since $\nabla_{r} h=-2 a \xi^{t} h_{t s} \phi_{\mathrm{r}}^{s}$ by (2.2) and (3.10),

$$
\begin{equation*}
\left(\nabla_{r} h\right) \phi_{j}^{r}=2 a\left(h_{r} \xi^{r}-\alpha \xi_{j}\right) . \tag{3.19}
\end{equation*}
$$

Hence, multiplying ξ^{j} to (3.18), we have

$$
\begin{equation*}
h(\beta-2 a \alpha)=(\alpha-2 a)\left\{h_{2}-2(n-1)\right\} . \tag{3.20}
\end{equation*}
$$

On the other hand, from (3.5) and (3.19), we get

$$
\begin{equation*}
\nabla^{m} \xi_{j m}=(h-2 a) h_{j r} \xi^{r}+\left\{2 a \alpha-h_{2}+2(n-1)\right\} \xi_{j} . \tag{3.21}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
h^{\jmath \star} \xi_{2} \nabla^{m} \xi_{j m}=\beta(h-2 a)+\alpha\left\{2 a \alpha-h_{2}+2(n-1)\right\} . \tag{3.22}
\end{equation*}
$$

From (2.1), (2.4), and (3.14), we obtain

$$
\begin{align*}
h^{\jmath \mathfrak{r}} \xi_{\mathfrak{m}} \nabla^{m} \xi_{j_{\imath}} & =2 \xi^{m}\left(\nabla_{m} h_{\mathfrak{r}}\right)\left(\nabla^{\jmath} \xi^{\mathfrak{i}}\right) \tag{3.23}\\
& =2 \xi^{m}\left(\nabla_{\jmath} h_{2 m}\right)\left(\nabla^{\jmath} \xi^{\imath}\right)+2(h-\alpha) .
\end{align*}
$$

Since, from (3.1) and (3.3),

$$
\begin{equation*}
\nabla_{f}\left(\xi^{r} \nabla_{r} \xi^{j}\right)=\left(\nabla_{j} \xi^{i}\right)\left(\nabla_{\imath} \xi^{\jmath}\right)+h \alpha-\beta+2(n-1), \tag{3.24}
\end{equation*}
$$

$$
\begin{align*}
\left\|\xi_{3}\right\|^{2} & =2\left(\nabla_{j} \xi^{i}\right)\left(\nabla^{\jmath} \xi_{\mathfrak{r}}\right)+2\left(\nabla_{,} \xi^{\imath}\right)\left(\nabla_{\mathfrak{r}} \xi^{j}\right) \tag{3.25}\\
& =2 \nabla_{j}\left(\xi^{r} \nabla_{r} \xi^{j}\right)+2\left\{h_{2}-h \alpha-2(n-1)\right\}
\end{align*}
$$

by (2.1) and (2.2).

From (2.2) and (3.8), the Laplacian $\Delta h_{j i}$ of $h_{j i}$ is given by

$$
\begin{align*}
\Delta h_{j i}= & \left(\nabla^{m} \xi_{j}\right) \phi_{1 m}+\left(\nabla^{m} \xi_{1}\right) \phi_{j m}+2 h \xi_{j} \xi_{i} \tag{3.26}\\
& -h_{i r} \xi^{\prime} \xi_{j}-h_{3} \xi^{r} \xi_{i}+a\left\{\left(\nabla^{m} \xi_{j}\right) \xi_{i m}+\left(\nabla^{m} \xi_{i}\right) \xi_{j m}\right. \\
& \left.+\xi_{m} \nabla^{m} \xi_{j i}+\xi_{j} \nabla^{m} \xi_{1 m}+\xi_{i} \nabla^{m} \xi_{j m}\right\}
\end{align*}
$$

Hence, by (2.1), (2.2), (3.14) and (3.21), we have

$$
\begin{equation*}
\left(\Delta h_{\jmath}\right) \xi^{j} \xi^{2}=2(h-\alpha)-2 a\left\{h_{2}-h \alpha-2(n-1)+\beta-\alpha^{2}\right\} . \tag{3.27}
\end{equation*}
$$

From (3.23), (3.25), and (3.27), we get

$$
\begin{align*}
& \Delta \alpha-2 \nabla^{m}\left(h_{j r} \xi^{j} \nabla_{m} \xi^{2}\right)-2 a \nabla_{j}\left(\xi^{r} \nabla_{r} \xi^{j}\right) \tag{3.28}\\
& =\left(\Delta h_{\mathrm{g}}\right) \xi^{3} \xi^{i}+2 \xi^{m}\left(\nabla_{j} h_{\mathrm{rm}}\right)\left(\nabla^{\jmath} \xi^{i}\right)-2 a \nabla_{\jmath}\left(\xi^{r} \nabla_{r} \xi^{j}\right) \\
& =2 \xi^{m}\left(\nabla_{m} h_{g 2}\right)\left(\nabla^{\jmath} \xi^{2}\right)-a\left\|\xi_{j 1}\right\|^{2}-2 a\left(\beta-\alpha^{2}\right) \text {. }
\end{align*}
$$

Multiplying h^{32} to (3.26), and using (2.2), (3.22), (3.23), and (3.24),

$$
\begin{aligned}
h^{j 2} \triangle h_{\jmath_{2}} & =2 \nabla_{j}\left(\xi^{r} \nabla_{r} \xi^{j}\right)+2 a \xi^{m}\left(\nabla_{m} h_{\jmath 1}\right)\left(\nabla^{j} \xi^{i}\right) \\
& +2 a\left[\beta(h-2 a)+\alpha\left\{2 a \alpha-h_{2}+2(n-1)\right\}\right]-4(n-1)
\end{aligned}
$$

because $h^{j i}\left(\nabla^{m} \xi_{j}\right) \xi_{t m}=0$. Hence, from (3.20) and (3.25), we have

$$
\begin{aligned}
h^{j i} \Delta h_{j i} & -2\left(2 a^{2}+1\right) \nabla_{\jmath}\left(\xi^{r} \nabla_{r} \xi^{j}\right) \\
& =2 a \xi^{m}\left(\nabla_{m} h_{j t}\right)\left(\nabla^{j} \xi^{2}\right)-2 a^{2}\left\|\xi_{j i}\right\|^{2}-4 a^{2}\left(\beta-\alpha^{2}\right)-4(n-1) .
\end{aligned}
$$

Since $\frac{1}{2} \Delta h_{2}=h^{j 1} \Delta h_{\jmath 1}+\left\|\nabla_{k} h_{\jmath 1}\right\|^{2}$, we obtain

$$
\begin{align*}
\Delta F & =\left\|\nabla_{k} h_{j}\right\|^{2}+2 a \xi^{m}\left(\nabla_{m} h_{j z}\right)\left(\nabla^{j} \xi^{2}\right) \tag{3.29}\\
& -2 a^{2}\left\|\xi_{j z}\right\|^{2}-4 a^{2}\left(\beta-\alpha^{2}\right)-4(n-1),
\end{align*}
$$

where $\Delta F=\frac{1}{2} \Delta h_{2}-2\left(2 a^{2}+1\right) \nabla_{J}\left(\xi^{r} \nabla_{r} \xi^{j}\right)$. If we put

$$
\nabla_{k} h_{j \mathrm{t}}^{*}=\nabla_{k} h_{\jmath_{t}}-\xi, \phi_{i k}-\xi_{1} \phi_{j k}-a\left(\xi_{\jmath} \xi_{t k}+\xi_{\imath} \xi_{j k}+\xi_{k} \xi_{i j}\right),
$$

then we get

$$
\begin{aligned}
\left\|\nabla_{k} h_{j i}^{*}\right\|^{2} & =\left\|\nabla_{k} h_{\jmath}\right\|^{2}-12 a \xi^{k}\left(\nabla_{k} h_{\jmath}\right)\left(\nabla^{j} \xi^{1}\right) \\
& +3 a^{2}\left\|\xi_{\jmath}\right\|^{2}+6 a^{2}\left(\beta-\alpha^{2}\right)-4(n-1)
\end{aligned}
$$

by (2.1), (2.2), (3.3), (3.13) and (3.23). Thus, by (3.29),

$$
\Delta F=\left\|\nabla_{k} h_{j}^{*}\right\|^{2}+14 a \xi^{k}\left(\nabla_{k} h_{j i}\right)\left(\nabla^{\jmath} \xi^{1}\right)-5 a^{2}\left\|\xi_{\jmath ı}\right\|^{2}-10 a^{2}\left(\beta-\alpha^{2}\right) .
$$

Since M is compact and $\left(\nabla_{r} \xi^{j}\right)\left(\nabla_{s} \xi_{j}\right) \xi^{r} \xi^{s}=\beta-\alpha^{2} \geq 0$, from (3.28), we have

$$
\left\|\nabla_{k} h_{j l}^{*}\right\|^{2}+2 a^{2}\left\|\xi_{j:}\right\|^{2}+4 a^{2}\left(\beta-\alpha^{2}\right)=0
$$

by the Stoke's theorem. Consequently, we obtain $a\left\|\xi_{11}\right\|=0$. If $\left\|\xi_{3}\right\|=$ 0 , then, from (2.2), we get $h_{1 r} \phi_{\mathbf{1}}{ }^{r}+h_{2 r} \phi_{j}{ }^{r}=0$. And, if $a=0$, then $\nabla_{k} h_{j i}=\xi_{j} \phi_{i k}+\xi_{2} \phi_{j k}$ because $\nabla_{k} h_{j i}^{*}=0$. Therefore, M is of type A_{1} or A_{2} (see [6] and [7]).

References

1. T. E Cecil and P. J. Ryan, Trans. Amer. Math. Soc..
2. J. J. Kim and Y. S. Pyo, Real hypersurfaces with parallely cyclic condition of a complex space form, Bull. Kor. Math. Soc. 28 (1991), 11-20.
3. M. Kimura, Real hypersurfaces in a complex projective space, Bull Austral Math. Soc. 33 (1986), 383-387.
4. M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space, Preprint.
5. M. Kon, Pseudo-Eznstein real hypersurfaces in complex space forms, J. Diff Geometry 14 (1979), 339-354.
6. Y. Maeda, On real hypersurfaces of a complex projective space, J. Math Soc. Japan 28 (1976), 529-540.
7. M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364.
8. R. Takagi, On homogeneous real hypersurfaces of a complex projectıve space, Osaka J. Math. 10 (1973), 495-506.

Department of Applied Mathematics
National Fisheries University of Pusan
Pusan 608-737, Korea

