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COMPACT REAL HYPERSURFACES
WITH PARALLELY CYCLIC CONDITION
OF A COMPLEX PROJECTIVE SPACE

YonGg-Soo Pyo

1. Introduction

Let P,(C) be an n-dimensional complex projective space with Fu-
bini Study metric of constant holomorphic sectional curvature 4. In
Takagi’s study (8] of real hypersurfaces of P,(C), he proved that all
homogeneous real hypersurfaces could be divided into six types which
are said to be type A{,A4,,B,C,D, and E.

In what follows an induced almost contact metric structure of a real
hypersurface M of P,.(C) is denoted by (¢, g,&, 7). The structure vector
€ is said to be principal if A¢ = af, where A is the shape operator in the
direction of the unit normal on M and « = p{A€). Real hypersurfaces
of P,(C) have been studied by many differential geometers. ({1}, 3],
[4], [5], {6], [7}], and {8] etc.) And one of them, Okumura {7} showed
that M is of type A; or A; if and only if Ap = ¢A. Furthermore.
Maeda [6] proved that M is of type A; or A, if and only if

9(VxAY, Z) +n(Y)g(X, Z) + n(Z)g(4X,Y) =0

for any vector fields X,Y, and Z on M, where V is the Riemannian
connection with respect to g.

In this paper, we shall prove the following theorem.

THEOREM. Let M be a compact real hypersurface with parallely
cyclic condition of a complex projective space P,{C). Then M is locally
congruent to one of the homogeneous hypersurfaces of t{ype A; or Aj.
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2. Preliminaries

Let M be a real hypersurface of a complex projective space Pr(C).
Throughout the present paper the following convention on the range
of indices are used, unless otherwise stated

3,3, =1,2,--,2n — L.
The summation convention will be used with respect to those system
of indices.
For an almost contact metric structure (¢, g,£,n) on M, the follow-
ing relations are given :

(2.1) Prok = 82 1 g,Eh, 6,87 =0,
&7 =0, £E=1

Furthermore, the covariant derivative of the structure tensors are ob-
tained by

(2.2) V¢t = —h; £+ hh, V& = ki,

where V is the Riemannian connection with respect to g and A = (k;;)
denotes the shape operator with respect to the unit normal on M. Since
P,(C) is of constant holomorphic sectional curvature 4, the Gauss and
Codazzi equations are respectively given as follows :

(2.3) Riyin = grngy: — 9509k + Skndji — Oxidin
— 2¢k,bin + hinhyi — hyihga,
(2.4) Vihyi — Vb, = kg — Eibii — 26idk;j,

where Rjj,, are the components of the Riemannian curvature tensor
of M. Let S,, be the components of the Ricci tensor of M. Then the
Gauss equation implies

(2.5) Sy =(2n + 1)g;s — 36,4, + hhye — h?ia

where A is the trace of the shape operator A and h?,- = h;-h].
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3. Proof of the Theorem

Let M be a real hypersurface of a complex projective space P,(C).
Then M is called parallely cyclicif V,,, Tk ;, = 3¢V Ugji (a is constant ),
where Tkjl = thj: + thkt + Vthjks Ukj: = §k€]€ + é]fkl + gsfjk and
€jp = V,& 4+ Vi&; (see [2]). From now on, we suppose that M is
compact and of parallely cyclic.

From (2.2), we have

(3.1) ViV, = (hjrl iy — by K2 E, — (Vihjr)ér.

Hence, the Laplacian A¢; of €; is given by

(3-2) Ab, = hir®€" — bk, — (Voh)47,

where hy = h,,h7'. Multiplying ¢** to (2.4), by (2.1) and (2.2), we get
(3.3) (Vihy)¢* = (58", = —2(n ~ 1)¢,.

Thus, from (3.1) and (33}, we ubtamn

(3.4) V™V e = hhy ™ — Byr? 7 + 2(n — 1)¢;.

Since £, = V,{m + Vi€, we have
(3.5) V™m = hhy &7 — ko, — (Vb)) + 2(n — 1)§,
by (3.2) and (3.4). Therefore

(3.6) OV m = —ha +2(n - 1),
where @ = k,,£7¢¢. Since M is of parallely cyclic and
(37) vakjt = 3vmvkhjx - 3vm(§)¢xk + €z¢1k)

by (2.4), we obtain

(3-8) VmuVih, = Viu(§0u + idyr) + aVim(€elys + €56k + &658)-

Applying 7 = j to (3.7) and summing up with respect to 7,

(3.9) Vi Vih =2aV, (V).

Hence, if we put W, = hV, h — 2ah€"V £, + £(V h)E, then we get
VW, = ||V.h — 2067V, & |17

because V¢, = 0. Since M is compact, we obtain the following lemma
by the Stoke’s theorem.
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LEMMJ_&. Under the hypothesis of the Theorem, we have
(3.10) Vih = 20"V, ¢,

On the other hand, from (3.9), we obtain
(3.11) a{(V,E ) (Vebs) = (Vi )(Voby) +£7(V, V£, = ViV,E,)} = 0.
Multiplying £ to (3.11), and using (2.1), (2.2), and (3.1), we can know
(312)  a(E'V.E)NVLE,) = a{BE; — B2.E7 + EE(Tehar)ds),
where § = h% _¢™¢7. And, by (2.2),
{3.13) (VLN V,6 ) =h1E ~ ahyl.
From (2.2}, we have

(3.14)
Vmﬁjt = _(vmhjr)d’r - (th:r)¢; + hmihjf’fr
+ hth"-fr - hgméi - h2

tmht"

Hence, we obtain

(318)  (Vm&yi)§™E" = 2ah, o™ — 13,67 — BE, — £'6°(Vihar) 4.
From (2.3) and (2.5), we have

(3.16) (Skrh;"— Rynrych™ )" = Bk, 6" +{(2n+1) — ho}hjr €™ — hE,.
And, using the Ricci identity, we find

(3.17)
(Skrh;” ~ Runkyrh™ )R = 20, — hyrb™ — RE;
— a{267(V o bm)(V,6™) + & (Vo&m)(V™E})
— V™ + E ™V ilym — EX€, V™ 6k }
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by (2.1), {2.2) and (3.8). Combining (3.16) and (3.17), and using (2.1),
(2.2), (3.5), (3.6), (3.12), (3.13), and (3.15),

(3.18)
hhje €7 +(2n — hy)hj € — 2af,
= afhh, £ + {ha + 4(n - 1) — 2h3}¢, — (V. R)$,"].

Since V,h = —2a€*he,¢? by (2.2) and (3.10),
(3.19) (Voh)g;™ = 2a(h,et” — of).
Hence, multiplying ¢’ to (3.18), we have
(3.20) h(B — 2aa) = (a — 2a){hy — 2(n — 1)}.
On the other hand, from (3.5) and {3.19), we get
(3.21) V™m = (h —2a)h, £" + {2aa — hs + 2(n — 1) }§;.
Thus, we have
(3.22) REV™Em = B(h — 2a) + a{2aa — he +2(n — 1)}.
From (2.1), (2.4), and (3.14), we obtain
(3.23)  WEnV™E, = 2%(Tnhy)(VE)
=2{™(V;hem (V7€) + 2(h — a).
Since, from (3.1) and (3.3),

(324) V(€Y. &) = (Vi NV ) + ha— B+2(n - 1),
(3.25)

Hesll® = 2(V;ENVIE) + 2V, NV E)
= 2V;(E"V &) + 2{hy — ha — 2(n — 1)}

by (2.1) and (2.2).
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From (2.2) and (3.8), the Laplacian Ahj; of kj; is given by

(3.26)
Ahji = (V™6,)pum + (V™6)bym + 2hE,6,

= hurl7E — Ryr €76 + @{(V7E Mim + (V76 ) jm
+ fmvmgji + E)Vm'slm + éivmgjm]V

Hence, by (2.1), (2.2), (3.14) and (3.21), we have
(3.27) (AREE =2(h—a) — 2a{hy — ha —2(n—1) + B —?}.
From (3.23), (3.25), and (3.27), we get

(3.28)
Aa — 2V™(hj £V o €) — 2aV;(E7V .£7)
= (AR )EE + 26™(V, b (V2 EY) — 2aV,(£7V ,£7)
= 2£m(thJg)(V-’§’) - a||§,,||2 — 2a(p — 0‘2)'

Multiplying h?* to (3.26), and using (2.2}, (3.22), (3.23), and (3.24),

B Dby, = 295(67V87) + 206™(Vimhyo) (V)
+ 2a[B(h — 2a) + a{2aa ~ hy + 2(n —1)}] —4(n — 1)

because h7*(V™E, ), = 0. Hence, from (3.20) and (3.25), we have
WiAR,; —2(2a% + 1)V, (£7V,£%)
= 20{™(Vmh;: (V7€) — 2a°[[€,.]| — 40(B — a®) — 4(n — 1).

Since 1Ahy = h*Ah,, + || Vih,|?, we obtain

(3.29) AF = ||thj,||2 + 2a§m(vmh,-.)(vf§')
— 202[,[1* — 403 (8 — o) — 4(n - 1),

where AF = 2Ahy — 2(2a® +1)V,(€7V,£?). If we put
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th;, = th;z - £J¢ik - §|¢jk - a(&}{xk + glgjk + {k&i})’

then we get

IVeRLH? = IVieh,f? ~ 12065 (Vih,, ) (V7€)
+ 3a2||fﬁ||2 + 6‘32(ﬁ - 0‘2) - 4(“ -1)

by (2.1), (2.2), (3.3), (3.13) and (3.23). Thus, by (3.29),

AF = || Vihy,||* + 14065 (Vihyi) (V7€) - 5a*[|6,.|1° — 10a* (8 — o).

Since M is compact and (V,£2)(V,£,)67¢* = § ~ a? > 0, from (3.28),

we have

(VR +2a*[[€.]|* + 40®(8 — o®) = 0

by the Stoke’s theorem. Consequently, we obtain afj{,,[[ = 0. If [|£,.]| =
0, then, from (2.2), we get h;rd" + hird,” = 0. And, if a = 0, then
Vihyi = €idur + £d;k because th;" = 0. Therefore, M 1s of {ype A,
or A (see [6] and [7]).
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