Pusan Kyŏngnam Math. J. 7(1991), No. 2, pp. 119-128

SHARP FUNCTION ESTIMATES FOR A CLASS OF PSEUDODIFFERENTIAL OPERATORS

H. S. KIM** AND S. S. SHIN*

1. Introduction

We say that a symbol $a(x,\xi)$ in the class $S^m_{\rho,\delta}$, or that $a \in S^m_{\rho,\delta}$, if for x,ξ in \mathbb{R}^n and multiindices α,β

$$|(\frac{\partial}{\partial x})^{\alpha}(\frac{\partial}{\partial \xi})^{\beta}| \leq C_{\alpha,\beta}(1+|\xi|)^{m-\rho|\beta|+\delta|\alpha|}$$

From the definition, it is obvious that $S_{\rho_1,\delta_1}^{m_1} \supset S_{\rho_2,\delta_2}^{m_2}$ if $\rho_1 \leq \rho_2, \delta_1 \geq \delta_2$ and $m_1 \geq m_2$.

If $a(x,\xi)$ is a symbol in $S^m_{\rho,\delta}$, then it defines a pseudodifferential operator A, by formula;

$$Af(x) = \int_{\mathbf{R}^n} a(x,\xi) \hat{f}(\xi) e^{2\pi i x \xi} d\xi$$

where f is a Schwartz function and \hat{f} denotes the Fourier transform of f.

For a locally integrable function f, we define the sharp function $f^{\sharp}(x)$ by formula

$$f^{\sharp}(x) = \sup_{Q} rac{1}{|Q|} \int_{Q} |f(y) - f_{Q}| dy$$

the supremum is taken over all cubes Q containing x, and f_Q is the average value of f on the cube Q.

Received October 27, 1991.

^{*} This research is supported by the Basic Science Research Institute, Ministry of Education, 1991.

^{**} This research is supported by TGRC-KOSEF,1991.

For $1 \leq p < \infty$,

$$M_p f(x) = \sup_Q \left\{ \frac{1}{|Q|} \int_Q |f(y)|^p dy \right\}^{\frac{1}{p}}$$

the supremum being taken over all cubes Q containing x.

Now for a symbol $a(x,\xi) \in S_{1,0}^0$, it has shown in Miller [5] that for each 1 ,

$$(Af)^{\sharp}(x) \leq CM_pf(x), \quad x \in \mathbf{R}^n \quad \text{ and } \quad f \in C_0^{\infty}(\mathbf{R}^n).$$

Also Chanillo and Torchinsky [2] showed that for a symbol $a(x,\xi) \in S_{\rho,\delta}^{-n(1-\rho)/2}, 0 \leq \delta < \rho < 1,$

$$(Af)^{\sharp}(x) \leq CM_2f(x), \quad x \in \mathbf{R}^n \quad ext{and} \quad f \in C_0^\infty(\mathbf{R}^n).$$

It is well-known that these sharp function estimates lead to various weighted L^p inequalities for Muckenhoupt's A_p weights.

We know that $\psi \in S_{1,0}^a$ and is real valued; it follows that $e^{i\psi} \in S_{1-a,a}^0$, 0 < a < 1. Consequently we are interested in the case $0 < \rho < \delta \leq 1$. The well-known L^2 results for pseudodifferential operator with symbol $a(x,\xi) \in S_{\rho,\delta}^m$ with $0 < \rho \leq \delta \leq 1$ have been established by L.Rodino [6]. So the purpose of this paper is to prove the sharp function estimates for pseudodifferential operators with symbols $a(x,\xi)$ in $S_{\rho,\delta}^m$ with $0 < \rho \leq \delta \leq 1$.

Now we state our theorems.

THEOREM 1. Let A be a pseudodifferential operator with symbol $a(x,\xi) \in S_{\rho,\delta}^{\frac{n}{2}(2\rho-\delta-1)}$ with $0 < \rho \leq \delta < 1$. Then for $f \in C_0^{\infty}(\mathbb{R}^n)$, $(Af)^{\sharp}(x) \leq CM_2 f(x)$ for all $x \in \mathbb{R}^n$.

THEOREM 2. Let A be a pseudodifferential operator with symbol $a(x,\xi) \in S_{\rho,1}^{m-\epsilon}$, $m = (\frac{n}{2}+1)(\rho-1)$, $0 < \rho < 1$ and $\epsilon > 0$. Then for $f \in C_0^{\infty}(\mathbf{R}^n)$, $(Af)^{\sharp}(x) \leq CM_2f(x)$ for all $x \in \mathbf{R}^n$.

2. Preliminary Lemmas

We begin by introducing a notation. By $|x| \sim t$ we denote the fact that the values of x in question lie in the annulus $\{x \in \mathbb{R}^n : t < |x| < 2t\}$.

LEMMA 2.1. [2]. Let $a(x,\xi) \in S_{\rho,\delta}^{\frac{n}{2}(\rho-1)}$, $0 < \delta \leq 1$, $0 < \rho < 1$. Let $K(x,\omega)$ denote the inverse Fourier transform, in the ξ -variable and in the distribution sense of $a(x,\xi)$, that is fomally

$$K(x,\omega) = \int_{\mathbf{R}^n} e^{2\pi i \xi \cdot \omega} a(x,\xi) d\xi.$$

Then for $|x - x_0| \le d < \frac{1}{2}$ and $N \ge 1$,

$$\left(\int_{|y-x_0|\sim (2^Nd)^{\rho}} |K(x,x-y) - K(x_0,x_0-y)|^2 dy\right)^{\frac{1}{2}} \le \frac{C|x-x_0|^{\rho(l-\frac{n}{2})}}{(2^Nd)^{l\rho}}$$

where *l* is an integer such that $\frac{n}{2} < l < \frac{n}{2} + \frac{1}{\rho}$.

LEMMA 2.2. Let $a(x,\xi) \in S_{\rho,1}^{m-\epsilon}$, $m = (\frac{n}{2}+1)(\rho-1)$, $\epsilon > 0$ and $0 < \rho < 1$. Let $K(x,\omega)$ denote the inverse Fourier transform, in the ξ -variable and in the distribution sense of $a(x,\xi)$, that is fomally

$$K(x,\omega) = \int_{\mathbf{R}^n} e^{2\pi i \xi \cdot \omega} a(x,\xi) d\xi.$$

Then for $|x - x_0| \le d < \frac{1}{2}$ and $N \ge 1$,

$$\left[\int_{|y-x_0|\sim 2^N d} |K(x,x-y) - K(x_0,x_0-y)|^2 dy \right]^{\frac{1}{2}} \\ \leq \frac{C|x-x_0|^{-m+l\rho-\frac{n}{2}}}{(2^N d)^l}$$

where l is an integer with $\frac{n}{2} < l \leq \frac{n}{2} + 1$.

Proof. Let $\sum_{j\geq 0} \theta_j(\xi) = 1$ be a partition of unity such that $\theta_j(\xi)$ is supported in $|\xi| \sim 2^j, j \geq 1$, and $\theta_0(\xi)$ is supported in $|\xi| \leq 2$. Let

$$a(x,\xi) = \sum_{j\geq 0} \theta_j(\xi) a(x,\xi) = \sum_{j\geq 0} a_j(x,\xi).$$

Moreover, put

$$\int_{\mathbf{R}^n} e^{2\pi i x \cdot \xi} a_j(x,\xi) \hat{f}(\xi) d\xi = \int_{\mathbf{R}^n} K_j(x,x-y) f(y) dy, j \ge 0,$$

where

$$K_j(x,x-y) = \int e^{2\pi i \xi \cdot (x-y)} a_j(x,\xi) d\xi.$$

Thus $K(x,\omega) = \sum_{j\geq 0} K_j(x,\omega)$. We now get

$$\left[\int_{|y-x_0|\sim 2^N d} |K(x,x-y) - K(x_0,x_0-y)|^2 dy\right]^{\frac{1}{2}} \\ \leq \sum_{j\geq 0} \left[\int_{|y-x_0|\sim 2^N d} |K_j(x,x-y) - K_j(x_0,x_0-y)|^2 dy\right]^{\frac{1}{2}}.$$

We choose j_0 such that $2^{j_0}|x - x_0| \sim 1$, and break up the sum on the above as follows:

$$\begin{split} &\sum_{j < j_0} (\int_{|y-x_0| \sim 2^N d} |K_j(x, x-y) - K_j(x_0, x_0 - y)|^2 dy)^{\frac{1}{2}} \\ &+ \sum_{j \ge j_0} (\int_{|y-x_0| \sim 2^N d} |K_j(x_0, x_0 - y)|^2 dy)^{\frac{1}{2}} \\ &+ \sum_{j \ge j_0} (\int_{|y-x_0| \sim 2^N d} |K_j(x, x-y)|^2 dy)^{\frac{1}{2}} = I + II + III, \quad \text{say} \; . \end{split}$$

We now consider I.

$$(2.1)$$

$$|I| \leq \sum_{j < j_0} \left[\int_{|y-x_0| \sim 2^N d} |K_j(x, x-y) - K_j(x_0, x-y)|^2 dy \right]^{\frac{1}{2}}$$

$$+ \sum_{j < j_0} \left[\int_{|y-x_0| \sim 2^N d} |K_j(x_0, x-y) - K_j(x_0, x_0-y)|^2 dy \right]^{\frac{1}{2}}$$

Sharp function estimates for a class of pseudodifferential operators 123

$$= I_1 + I_2, \quad \text{say.}$$

Now, by Hausdorff Young's inequality,

$$\begin{split} |I_{1}| &\leq \sum_{j \leq j_{0}} \left[\int_{||y-x_{0}| \sim 2^{N}d} |K_{j}(x,x-y) - K_{j}(x_{0},x-y)|^{2} dy \right]^{\frac{1}{2}} \\ &\leq C \sum_{j \leq j_{0}} (2^{N}d)^{-l} \\ &\quad \cdot \left[\int_{||y-x_{0}| \sim 2^{N}d} (|K_{j}(x,x-y) - K_{j}(x_{0},x-y)| \cdot |y-x|^{l})^{2} dy \right]^{\frac{1}{2}} \\ &\leq C \sum_{j \leq j_{0}} (2^{N}d)^{-l} \sum_{|\beta|=l} \left[\int \sup_{\eta} |(\frac{\partial}{\partial \eta})(\frac{\partial}{\partial \xi})^{\beta} a_{j}(\eta,\xi)|^{2} d\xi \right]^{\frac{1}{2}} |x-x_{0}| \\ &\leq C \sum_{j \leq j_{0}} (2^{N}d)^{-l} 2^{j[m-\epsilon-l\rho+1+\frac{n}{2}]} |x-x_{0}| \\ &\leq C (2^{N}d)^{-l} 2^{j_{0}[m-l\rho+1+\frac{n}{2}]} |x-x_{0}| \sum_{j \leq j_{0}} 2^{-j\epsilon}. \end{split}$$

Since $l \leq \frac{n}{2} + 1$ and $2^{j_0} |x - x_0| \sim 1$, the above sum is dominated by

(2.2)
$$C(2^N d)^{-l} 2^{j_0(m-l\rho+\frac{n}{2})} \le C(2^N d)^{-l} |x-x_0|^{-m+l\rho-\frac{n}{2}}$$

We consider the second term I_2 in (2.1). In this case, we first dominate this term by

$$(2.3) \quad \sum_{j < j_0} (2^N d)^{-l} \\ \cdot \left[\int_{|y-x_0| \sim 2^N d} (|y-x_0|^l |K_j(x_0, x-y) - K_j(x_0, x_0-y)|)^2 dy \right]^{\frac{1}{2}}.$$

H. S. Kim and S. S. Shin

Now we consider the integrand, for $|\alpha| = l$,

$$\begin{aligned} |y - x_0|^l \cdot |K_j(x_0, x - y) - K_j(x_0, x_0 - y)| \\ &= |y - x_0|^l \left| \int e^{2\pi i (x_0 - y) \cdot \xi} a_j(x_0, \xi) (e^{2\pi i (x - x_0) \cdot \xi} - 1) d\xi \right| \\ &= C \left| \int e^{2\pi i (x_0 - y) \cdot \xi} (\frac{\partial}{\partial \xi})^{\alpha} [a_j(x_0, \xi) (e^{2\pi i (x - x_0) \cdot \xi} - 1)] d\xi \right|. \end{aligned}$$

So by Hausdorff Young inequality and Leibniz's formular, we can majorize (2.3) by

$$C \sum_{j < j_{0}} (2^{N}d)^{-l} \\ \cdot \left(\int \sum_{\substack{|\beta| + |\gamma| = l \\ |\beta| + |\gamma| = l}} |(\frac{\partial}{\partial \xi})^{\beta} a_{j}(x_{0}, \xi) (\frac{\partial}{\partial \xi})^{\gamma} (e^{2\pi i (x - x_{0}) \cdot \xi} - 1)|^{2} d\xi \right)^{\frac{1}{2}} \\ \leq C \sum_{j < j_{0}} (2^{N}d)^{-l} \sum_{\substack{|\beta| + |\gamma| = l \\ |\gamma| \neq 0}} |x - x_{0}|^{|\gamma|} 2^{j(m - \epsilon - \rho|\beta| + \frac{n}{2})} \\ + C \sum_{j < j_{0}} (2^{N}d)^{-l} |x - x_{0}|^{2^{j(m - \epsilon - \rhol + \frac{n}{2} + 1)}}.$$

But $|x - x_0| \leq \frac{1}{2}$ and since $l \leq \frac{n}{2} + 1$, the second sum above dominates the first one. Since $2^{j_0}|x - x_0| \sim 1$, this second term is bounded by $C(2^N d)^{-l}|x - x_0|^{-m+l\rho - \frac{n}{2}}$. Similarly, we get

$$|II| \le C(2^N d)^{-l} |x - x_0|^{-m + l\rho - \frac{n}{2}} \quad \text{and,} |III| \le C(2^N d)^{-l} |x - x_0|^{-m + l\rho - \frac{n}{2}}.$$

This completes the proof.

LEMMA 2.3. If $a \in S_{\rho,\delta}^{m_1}$ and $b \in S_{\rho,\delta}^{m_2}$, $0 \le \rho$, $\delta \le 1$, then $ab \in S_{\rho,\delta}^{m_1+m_2}$.

Proof. See Proposition 3.4 [1].

3. The Proofs of the Main Theorems

The proof of Theorem 1: Let $f \in C_0^{\infty}(\mathbb{R}^n)$. Given $x_0 \in \mathbb{R}^n$ and a cube Q centered at x_0 of side length d. The non-trivial case is when $d \leq 1$, which we consider.

Let $f(x) = f_1(x) + f_2(x)$ with $f_1(x) = f(x)\chi_B(x)$, where B is a cube concentric with Q of side length d^{ρ} . Let $a(x,\xi) = a(x,\xi) |\xi|^{n(1-\rho)/2}$ $|\xi|^{n(\rho-1)/2} = q(x,\xi) |\xi|^{n(\rho-1)/2}$, say. We note that, by Lemma 2.3, $q(x,\xi) \in S_{\rho,\delta}^{\frac{n}{2}(\rho-\delta)}$. So the pseudodifferential operator with symbol $q(x,\xi)$ is bounded on $L^2(\mathbf{R}^n)$ [6]. We denote this operator by G.

Let $\frac{1}{p} = \frac{1}{2} - \frac{(1-\rho)}{2}$. Then by the usual Hardy-Littlewood-Sobolev fractional integration theorem and the L^2 -boundedness of G we get, $\frac{1}{p} + \frac{1}{p'} = 1$,

$$\begin{split} \int_{Q} |Af_{1}(x)| dx &\leq C d^{n/p'} (\int_{\mathbf{R}^{n}} |Af_{1}(x)|^{p} dx)^{\frac{1}{p}} \\ &\leq C d^{\frac{n}{p'}} (\int_{\mathbf{R}^{n}} |Gf_{1}(x)|^{2} dx)^{\frac{1}{2}} \\ &\leq C d^{\frac{n}{p'}} (\int_{B} |f_{1}(x)|^{2} dx)^{\frac{1}{2}} \\ &\leq C d^{n} M_{2} f_{1}(x_{0}). \end{split}$$

We now estimate the term involving $Af_2(x)$. Let

$$Af_2(x) = \int_{\mathbf{R}^n} K(x, x - y) f_2(y) dy,$$

and let

$$C_I = \int_{\mathbf{R}^n} K(x_0, x_0 - y) f(y) dy$$

where $K(x,\omega) = \int_{\mathbf{R}^n} e^{2\pi i \xi \ \omega} a(x,\xi) d\xi.$

Then we get, for $x \in Q$,

$$|Af_{2}(x) - C_{I}| \leq \int_{\mathbf{R}^{n}} |K(x, x - y) - K(x_{0}, x_{0} - y)||f_{2}(y)|dy$$
$$\sum_{N=1}^{\infty} (\int_{|y-x_{0}| \sim (2^{N}d)^{\rho}} |K(x, x - y) - K(x_{0}, x_{0} - y)|^{2} dy)^{\frac{1}{2}} \times (\int_{|y-x_{0}| \sim (2^{N}d)^{\rho}} |f_{2}(y)|^{2} dy)^{\frac{1}{2}}.$$

Since $S_{\rho,\delta}^{\frac{n}{2}}(2\rho-\delta-1) \subseteq S_{\rho,\delta}^{\frac{n}{2}}(\rho-1)$, for $\rho \leq \delta$, applying Lemma 1 to the first term in the summands on the right above. Hence we get, for $|x-x_0| \leq d$,

$$\begin{aligned} |Af_2(x) - C_I| &\leq C \sum_{N=1}^{\infty} |x - x_0|^{\rho(l - \frac{n}{2})} (2^N d)^{-l\rho + \frac{n}{2}\rho} M_2 f(x_0) \\ &\leq C \sum_{N=1}^{\infty} (2^N)^{\rho(\frac{n}{2} - l)} M_2 f(x_0) \leq C M_2 f(x_0) \end{aligned}$$

because $l > \frac{n}{2}$. This concludes the case $d \le 1$.

In the case d > 1, we easily get desired result following closely a proof of Chanillo and Torchinski [2].

The proof of Theorem 2: Let $f \in C_0^{\infty}(\mathbf{R}^n)$. Given $x_0 \in \mathbf{R}^n$ and a cube Q centered at x_0 with diameter d. The nontrivial case is when $d \leq 1$, which we consider. Let $f(x) = f_1(x) + f_2(x)$ with $f_1(x) = f(x)\chi_I(x)$, where $I = \{y \in \mathbf{R}^n : |y - x_0| \leq 3d\}$. Then, for $x \in Q$,

$$\begin{aligned} \frac{1}{|Q|} \int_{Q} |Af_{1}(x)| dx &\leq \left(\frac{1}{|Q|} \int_{Q} |Af_{1}(x)|^{2} dx\right)^{\frac{1}{2}} \\ &\leq \left(\frac{1}{|Q|} \int_{\mathbf{R}^{n}} |Af_{1}(x)|^{2}\right)^{\frac{1}{2}} \end{aligned}$$

Since A is bounded on $L^2(\mathbb{R}^n)$, the above term dominated by

$$\leq C \frac{1}{|Q|^{\frac{1}{2}}} \left(\int_{\mathbf{R}^n} |f_1(x)|^2 dx \right)^{\frac{1}{2}}$$

= $C \left(\frac{1}{|Q|} \int_I |f_1(x)|^2 dx \right)^{\frac{1}{2}}$
 $\leq C M_2 f_1(x_0).$

We now estimates the term involving $Af_2(x)$. Since

$$Af_2(x) = \int_{\mathbf{R}^n} K(x, x-y) f_2(y) dy,$$

letting $C_I = \int_{\mathbb{R}^n} K(x_0, x_0 - y) f_2(y) dy$. We get, for $x \in Q$, by Hölder inequality,

$$\begin{aligned} |Af_{2}(x) - C_{I}| \\ &\leq \int_{\mathbf{R}^{n}} |K(x, x - y) - K(x_{0}, x_{0} - y)| \cdot |f_{2}(y)| dy \\ &\leq \sum_{N=1}^{\infty} \left[\int_{|y - x_{0}| \sim 2^{N} d} |K(x, x - y) - K(x_{0}, x_{0} - y)|^{2} dy \right]^{\frac{1}{2}} \\ &\quad \cdot \left[\int_{|y - x_{0}| \sim 2^{N} d} |f_{2}(x)|^{2} dy \right]^{\frac{1}{2}}. \end{aligned}$$

By Lemma 2.2., the above term is dominated by

$$C\sum_{N=1}^{\infty} (2^N d)^{-l} |x-x_0|^{-m+l\rho-\frac{n}{2}} (2^N d)^{\frac{n}{2}} M f_2(x_0),$$

where $\frac{n}{2} < l \leq \frac{n}{2} + 1$. Since $-m + l\rho - \frac{n}{2} > 0$,

$$\leq C \sum_{N=1}^{\infty} (2^N)^{-l} d^{-m+l\rho-\frac{n}{2}} (2^N d)^{\frac{n}{2}} M_2 f_2(x_0)$$

$$\leq C \sum_{N=1}^{\infty} d^{-m+l\rho-l} (2^N)^{\frac{n}{2}-l} M_2 f_2(x_0).$$

The choice of l assures us that $-m + l\rho - l \ge 0$ and $\frac{n}{2} - l < 0$. Thus $|Af_2(x) - C_I| \le CM_2f_2(x_0).$

References

- 1. R. Beals, A general calculus of pseudodifferential operators, Duke Math. J. 42 (1975), 1-42.
- S. Chanillo and A. Torchinsky, Sharp function and weighted L^p estimates for class of pseudodifferential operators, Ark. Math. 24 (1986), 1-25.
- 3. L. Hörmanderpaper Pseudodifferential operators of type (1.1), Comm. Partial Diff. Eq. 13:9 (1988).
- J-L. Journé, A boundedness criterian for generalized Calderón-Zygmund operators, Annl. Math. 120 (1984), 371-397.
- 5. N. Miller, Weighted sobolev spaces and pseudodifferential operators with smooth symbols, Trans. Math. Soc. 269 (1982), 91–109.
- 6. L. Rodino, On the boundedness of pseudodifferential operators in the class $L_{\rho,1}^m$, Proc. Amer. Math. Soc. 58 (1976), 211-215.
- 7. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, New Jersey, 1971

Department of Mathematics Kyungpook National University Taegu 702–701, Korea