Pusan Kyongnam Math. J. 7(1991), No. 2, pp 109-117

APPLICATION FOR THE METHODS OF LINES TO NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS IN HILBERT SPACES

KI-YEON SHIN

1. Introduction

Let $(H, \|\cdot\|, (\cdot, \cdot))$ denote a real Hilbert space and let I, S_t represent the intervals [0, T], [-r, t], respectively where $0 < T < \infty, t \in I$ and $r \geq 0$. For a compact interval $J \subset R$, we shall denote by C(J, H)the Banach space of all continuous functions from J into H endowed with the supremum norm $\|\cdot\|_{C(J,H)}$ and by Lip(J,H) the class of all Lipschitz continuous functions from J into H. And we denote by $B_r(X)$ the closed ball $\{x \in X : \|x\|_X \leq r\}$ for positive constant r.

In this paper we apply the Method of Lines to establish the existence of unique strong solution of the following type of nonlinear abstract integro- differential equation :

(1.1)
$$\frac{du}{dt}(t) + Au(t) = G(t, u(t), F(u)(t)), \text{ for a.e. } t \in (0, T)$$
$$u = \phi \text{ on } S_0, \ \phi \in Lip(S_0, H),$$

where we assume the followings :

(H1): The single valued nonlinear operator $A: D(A) \subset H \to H$ satisfies

(a) maximal monotonicity. i.e.,

$$(Au - Av, u - v) \ge 0$$
 for all $u, v \in D(A)$

and
$$R(I+A) = H$$
,
(b) $0 \in D(A)$

Received October22, 1992.

Ki-yeon Shin

- (H2): The mapping $G: I \times H \times H \to H$ satisfies
 - (a) $||G(t, u, v)|| \le M(1 + ||u|| + ||v||)$ for all $t \in I$ and $u, v \in H$ where M is a positive constant,
 - (b) For all $t_1, t_2 \in I$, $u_1, u_2, v_1, v_2 \in B_r(H)$

$$||G(t_1, u_1, v_1) - G(t_2, u_2, v_2)|| \le ||h(t_1) - h(t_2)|| + M_r(||u_1 - u_2|| + ||v_1 - v_2||)$$

where $h: I \to H$ is a continuous function of bounded variation and M_r is a positive constant depending on r.

(H3): The nonlinear operator F is a Volterra operator (cf. [1]) which maps $C(S_T, H)$ into $C(S_T, H)$ satisfying

- (a) $||F(u)||_{C(S_T,H)} \leq M(1+||u||_{C(S_T,H)})$ for all $u \in C(S_T,H)$
- (b) $||F(u) \hat{F}(v)||_{C(S_T,H)} \leq M_r ||u v||_{C(S_T,H)}$ for all $u, v \in B_r(C(S_T,H))$ and
- (c) there exists a continuous function $L: R_+ \to R_+$ such that

$$\|F(u)(t) - F(u)(s)\| \le |t - s|L(\|u\|_{C(S_T, H)})(1 + \|\frac{du}{dt}\|_{L^{\infty}(S_t, H)})$$

for all $t, s \in I$ and $u \in Lip(S_T, H)$

We are now to show several previous results for the similar equations. They all have got the Method of Lines in common even having different conditions.

1. Necas [3] has solved the equation in Hilbert space

(1.2)
$$\frac{du}{dt}(t) + Au(t) = f(t), \quad t \in (0,T)$$
$$u(0) = u_0$$

where A is a maximal monotone operator, $u_0 \in D(A)$, and $f: [0,T] \to H$ is a continuous function of bounded variation.

2. Kartsatos and Zigler [2] have proved the existence of a unique weak solution of the following equation in a reflexive Banach space X whose dual is uniformly convex :

(1.3)
$$\frac{du}{dt}(t) + Au(t) = G(t, u(t)), \quad t \in (0, T]$$
$$u(0) = u_0$$

110

where $A: D(A) \subset X \to X$ is m-accretive operator and $G: [0,T] \times X \to X$ satisfies the Lipschitz-like condition

(1.4)
$$||G(t,x) - G(s,y)||_X \le ||h(t) - h(s)||_X + L||x-y||_X$$

for all $t, s \in [0, T]$ and all $x, y \in X$ with a continuous function of bounded variation h and a positive constant L. We note that the condition (4) is global in X.

3. Kacur [1] considered a paticular case $G(t, u(t), F(u)(t)) \equiv G(t, F(u)(t))$ of (1) in the Lion's set-up (i.e., there are reflexive space V and Hilbert space H such that $V \cap H$ is dense in V and H) with the following assumptions :

(A1) $A: V \to V^*$ is a maximal monotone operator satisfying

(1.5)
$$< Au, u > \geq ||u|| p(||u||) - C_1 ||u||^2 - C_2$$

Here $\langle \cdot, \cdot \rangle$ denotes the duality product and $p: \mathbb{R}_+ \to \mathbb{R}_+$ satisfies the condition $p(s) \to \infty$ as $s \to \infty$.

(A2) $G: I \times H \to H$ satisfis the Lipschitz condition

(1.6)
$$||G(t,u) - G(s,v)|| \le C[|t-s|(1+||u||) + ||u-v||]$$

for all $t, s \in I$ and $u, v \in H$.

(A3) The Volterrl operator F satisfies

 $||F(u) - F(v)||_{C(S_T,H)} \le ||u - v||_{C(S_T,H)}$

for all $u, v \in C(S_T, H)$, and

$$\|F(u)(t) - F(u)(s)\| \le |t - s|L(\|u\|_{C(S_T, H)})(1 + \|\frac{du}{dt}\|_{L^{\infty}(S_T, H)})$$

for all $t, s \in I, s < t$, and $u \in Lip(S_T, H)$

In this paper, we weaken the global Lipschitz conditions-(1.4), (A2) and (A3) and take more general nonlinear mapping G into consideration. Moreover, we do not assume any coercivity on the operator A as in (A1). Instead, we assume $0 \in D(A)$ which is not a very strong condition. It is obvious that (A2) and (A3) imply our hypotheses (H2) and (H3). But the reverse is not true in general. Ki-yeon Shin

2. Main Results

To apply the Method of Lines, we follow the following procedure : For any positive integer n we consider a partition $\{t_j^n\}$ defined by $t_j^n = j \cdot h$, $h = \frac{T}{n}$. Setting $u_0^n = \phi(0)$, we successively solve for $u \in D(A)$ the equation

(2.1)
$$\frac{u-u_{j-1}^n}{h} + Au = G(t_j^n, u_{j-1}^n, F(\tilde{u}_{j-1}^n)(t_j^n))$$

where

(2.2) $\tilde{u}_{j-1}^{n} = \begin{cases}
\phi \text{ on } S_{0}, \\
\phi(0) \text{ on } [0, h], \\
u_{i-1}^{n} + \frac{1}{h}(t - t_{i-1}^{n})(u_{i}^{n} - u_{i-1}^{n}) \text{ for } t \in [t_{i-1}^{n}, t_{i}^{n}], \ i = 1, \dots, j, \\
u_{j-1}^{n} \text{ on } [t_{j}^{n}, T].
\end{cases}$

The existence of unique $u_j^n \in D(A)$ satisfying (2.1) is a consequence of maximal monotonicity of the operator A. We first show, using (H1), (H2)-(a), and (H3)-(a), that $||u_j^n|| \leq M$ for all n and j = 1, 2, ..., nwhere M is a positive constant independent of j, h, and n. Then we prove that $\frac{1}{h} ||u_j^n - u_{j-1}^n|| \leq M$. After all we define a sequence $\{z^n\} \subset$ $Lip(S_T, H)$ given by

(2.3)
$$z^{n}(t) = \begin{cases} \phi(t) \text{ for } t \in S_{0}, \\ u_{j-1}^{n} + \frac{1}{h}(t - t_{j-1}^{n})(u_{j}^{n} - u_{j-1}^{n}) \text{ for } t \in (t_{j-1}^{n}, t_{j}^{n}] \end{cases}$$

and a sequence $\{u^n\}$ of step functions mapping from (-h, T] into H given by

(2.4)
$$u^{n}(t) = \begin{cases} \phi(0) & \text{for } t \in (-h, 0], \\ u_{j}^{n} & \text{for } t \in (t_{j-1}^{n}, t_{j}^{n}] \end{cases}$$

After proving some a priori estimate for $\{z^n\}$ and $\{u^n\}$ we establish the following main result.

112

THEOREM 1. Let hypotheses (H1)-(H3) be satisfied and let $\phi(0) \in D(A)$. Then there exists unique strong solution $u \in Lip(S_T, H)$ of (1.1) in the sense that $u = \phi$ on S_0 , $\frac{du}{dt} \in L^{\infty}(I, H)$, $Au \in L^{\infty}(I, H)$ and equation (1.1) is satisfied a.e. on I.

3. Proofs of Main Result

We shall denote by

$$z_j^n = \frac{u_j^n - u_{j-1}^n}{h}, \qquad g_j^n = G(t_j^n, u_{j-1}^n, F(\tilde{u}_{j-1}^n)(t_j^n))$$

for j = 1, 2, ..., n. For notational convience, we shall supress the superscript n sometimes. In the sequel, we denote by M a generic constant independent of j, h, and n.

LEMMA 1. Let the hypotheses (H1), (H2)-(a), and (H3)-(a) be satisfied and let $\phi(0) \in D(A)$. Then $||u_j|| \leq M$ for all n and j = 1, 2, ..., n.

Proof. From (H1), $(Au - A0, u) \ge 0$ which implies that $(Au, u) \ge -M_1 ||u||^2 - M_2$, where M_1 and M_2 are positive constants. Now, from (2.1) we have

(3.1)
$$(\frac{u_j - u_{j-1}}{h}, v) + (Au_j, v) = (g_j, v)$$

for all $v \in H$. We put v = hu, to obtain

(3.2)
$$\frac{1}{2} \|u\|^2 - \frac{1}{2} \|u_{j-1}\|^2 - M_1 h \|u_j\|^2 - M_2 h \le h \|g_j\| \|u_j\|.$$

Using (H2)-(a) and (H3)-(a), we get

$$||u_{i}||^{2} - ||u_{i-1}||^{2} \leq Mh(1 + \max_{1 \leq k \leq i} ||u_{k}||^{2})$$

for i = 1, 2, ..., n. Summing up the above inequality for i = 1 to j, we obtain

$$||u_j||^2 \le M(1 + \sum_{i=1}^j \max_{1 \le k \le i} ||u_k||^2).$$

Hence we have

$$\max_{1 \le k \le j} \|u_k\|^2 \le M(1 + h \sum_{i=1}^j \max_{1 \le k \le i} \|u_k\|^2).$$

Application of Grownwall's Lemma gives the required result.

LEMMA 2. In addition to the hypotheses of Lemma 1, we assume that (H2)-(b) and (H3)-(b)(c) are also satisfied. Then $||z_j|| \leq M$ for all n and j = 1, 2, ..., n.

Proof. From (3.1) for j = 1 and $v = z_1$, we have $||z_1|| \le M$ for all n. Also, we get

$$(z_j, v) + (Au_j - Au_{j-1}, v) = (z_{j-1}, v) + (g_j - g_{j-1}, v)$$

for all $v \in H$ and j = 2, 3, ..., n. Putting $v = z_j$, we have $||z_j|| \le ||z_{j-1}|| + ||g_j - g_{j-1}||$. Using Lemma 1, (H2)-(b), and (H3)-(b)(c), we obtain an estimate

$$\begin{aligned} \|g_{i} - g_{i-1}\| &\leq \|h(t_{i}) - h(t_{i-1})\| + Mh(\|z_{i-1}\|) \\ &+ \|\frac{\tilde{u}_{i-1} - \tilde{u}_{i-2}}{h}\|_{C(S_{T},H)} + 1 + \|\frac{d\tilde{u}_{i-2}}{dt}\|_{L^{\infty}(S_{t},H)}) \\ &+ \|h(t_{i}) - h(t_{i-1})\| + Mh(1 + \max_{1 \leq k \leq i} \|z_{k}\|). \end{aligned}$$

Therefore we have for $i = 1, 2, \ldots, n$;

$$||z_i|| - ||z_{i-1}|| \le ||h(t_i) - h(t_{i-1})|| + Mh(1 + \max_{1 \le k \le i} ||z_k||).$$

Summing up the inequality for i = 1 to j, we obtain

$$||z_j|| \le M(1 + h \sum_{i=1}^{j} \max_{1 \le k \le i} ||z_k||).$$

Proceeding similarly as in Lemma 1, we get the required result.

REMARK 1. Lemma 1 and Lemma 2 imply that

$$||z^{n}(t) - u^{n}(t)|| \le \frac{M}{n}, \qquad ||z^{n}(t) - z^{n}(s)|| \le M|t-s|$$

and $||z^n(t)|| + ||u^n(t)|| \le M$ for all n and $t, s \in I$.

Again, for the notational convenience, we shall denote by

(3.3)
$$w^n(t) = G(t_j^n, u_{j-1}^n, F(\tilde{u}_{j-1})(t_j^n)), \text{ for } t \in (t_{j-1}^n, t_j^n], \ 1 \le j \le n.$$

Then (2.1) can be rewritten in the form

(3.4)
$$\frac{d^{-}}{dt}z^{n}(t) + Au^{n}(t) = w^{n}(t), \text{ for } t \in (0,T],$$

where $\frac{d^{-}}{dt}$ denotes the left-derivative. Also, we have

(3.5)
$$\int_0^t Au^n(s)ds = u_0 - z^n(t) + \int_0^t w^n(s)ds.$$

LEMMA 3. There exists $u \in Lip(S_T, H)$ such that $u = \phi$ on S_0 and $z^n \to u$ in $C(S_T, H)$.

Proof. From (3.4) for $t \in (0,T]$ and for all $v \in H$ we have

$$(\frac{d^{-}}{dt}z^{n}(t)-\frac{d^{-}}{dt}z^{m}(t),v)+(Au^{n}(t)-Au^{m}(t),v)=(w^{n}(t)-w^{m}(t),v).$$

For $v = u^n(t) - Au^m(t)$, using monotonicity of A and the fact

$$2(\frac{d^{-}}{dt}z^{n}(t)-\frac{d^{-}}{dt}z^{m}(t),z^{n}(t)-z^{m}(t))=\frac{d^{-}}{dt}||z^{n}(t)-z^{m}(t)||^{2},$$

we get

$$\begin{aligned} &\frac{1}{2} \frac{d^{-}}{dt} \| z^{n}(t) - z^{m}(t) \|^{2} \\ &\leq (\frac{d^{-}}{dt} z^{n}(t) - \frac{d^{-}}{dt} z^{m}(t) - w^{n}(t) - w^{m}(t), z^{n}(t) - u^{n}(t) - z^{n}(t) + u^{m}(t)) \\ &+ (w^{n}(t) - w^{m}(t), u^{n}(t) - u^{m}(t)). \end{aligned}$$

Now,

$$||w^{n}(t) - w^{m}(t)|| \leq \epsilon_{nm}(t) + ||z^{n} - z^{m}||_{C(S_{T},H)},$$

where

$$\epsilon_{nm}(t) = \|h^{n}(t) - h^{m}(t)\| + M(|\psi^{n}(t) - \psi^{m}(t)| + \|u^{n}(t) - z^{n}(t - \frac{T}{n})\| + \|u^{m}(t) - z^{m}(t - \frac{T}{m})\| + \|\tilde{u}_{n-1}^{n} - z^{n}\|_{C(S_{t}, H)} + \|\tilde{u}_{m-1}^{m} - z^{m}\|_{C(S_{t}, H)}),$$

Ki-yeon Shin

for $h^n(t) = h(t_j^n)$, $\psi^n(t) = t_j^n$, $t \in (t_{j-1}^n, t_j^n]$, $h^n(0) = h(0)$, $\psi^n(0) = 0$. Clearly $h^n(t) \to h(t)$ and $\psi^n(t) \to t$ uniformly on I as $n \to \infty$. Hence we have the estimate

$$\frac{d}{dt} ||z^{n}(t) - z^{m}(t)||^{2} \le M(\epsilon_{nm} + ||z^{n} - z^{m}||^{2}_{C(S_{t},H)})$$

where $\{\epsilon_{nm}\}$ is a sequence of numbers such that $\epsilon_{nm} \to 0$ on I as $n, m \to \infty$. Integrating over (0, s) and taking supremum for $s \in (0, t)$ on both sides, we get

$$||z^n - z^m||^2_{C(S_t,H)} \le M(\epsilon_{nm} \cdot T + \int_0^t ||z^n - z^m||^2_{C(S_t,H)} ds).$$

Applying Grownwall's Lemma, we conclude that there exists $u \in C(S_T, H)$ such that $z^n \to u$ in $C(S_T, H)$. Obviously, $u = \phi$ on S_0 and from Remark 1, $u \in Lip(S_T, H)$.

Proof of Theorem 1. Proceeding similarly as in [2], it is easy to show $u(t) \in D(A)$ for $t \in I$, $Au^n(t) \rightarrow Au(t)$ (weakly), and Au(t) is weakly continuous in t. From (3.5), for every $v \in H$, we have

$$\int_0^t (Au^n(s), v) ds = (u_0, v) - (z^n(t), v) + \int_0^t (w^n(s), v) ds.$$

Using Lemma 3 and bounded convergence theorem, we pass through the limit for $n \to \infty$ to obtain (3.6)

$$\int_0^t (Au(s), v) ds = (u_0, v) - (u(t), v) + \int_0^t (G(s, u(s), F(u)(s), v) ds.$$

Since Au(t) is Bochner integrable, (3.6) implies that

$$\frac{du}{dt}(t) + Au(t) = G(t, u(t), F(u)(t)) \quad \text{for a.e. } t \in I.$$

Now, we show the uniqueness of strong solution. Let u_1 and u_2 be two strong solutions of equation (1.1). Let $u = u_1 - u_2$ and let $r = \max_{t \in [0,T]} \{ ||u_1||, ||u_2|| \}$. Then for a.e. $t \in I$, we have

$$(\frac{du}{dt}(t), u(t)) + (Au_1(t) - Au_2(t), u(t)) = (G(t, u_1(t), F(u_1)(t)) - G(t, u_2(t), F(u_2)(t)), u(t)).$$

116

Hypotheses (H1), (H2), and (H3) imply that

$$\frac{d}{dt} \|u(t)\|^2 \le M_r \|u\|_{C(S_t,H)}^2 \quad \text{ for a.e. } t \in I,$$

where M_r is a positive constant depending on r. Integrating over (0, s)and taking supremum both sides for $s \in (0, t)$ we get

$$\|u\|_{C(S_t,H)}^2 \leq M_r \int_0^t \|u\|_{C(S_s,H)}^2 ds.$$

From Grownwall's Lemma, $u(t) \equiv 0$ on I.

References

- 1. J. Kačur, Method of Rothe in Evolution Equations, Lecture Notes in Mathematics 1192, Springer-Verlag, New York, 1985, pp 23-34.
- 2. A. G. Kartsatos and W. R. Zigler, Rothe's method and weak solutions of perturbed evolution equation in reflexive Banach spaces, Math Analn. 219 (1976), 159-166.
- 3. J. Nečas, Application of Rothe's method to abstract parabolic equations, Czech. Math. J. 24 (1974), 495-500.

Department of Mathematics Pusan National University Pusan 609–735, Korea