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APPLICATION FOR THE METHODS OF LINES
TO NONLINEAR INTEGRO-DIFFERENTIAL
EQUATIONS IN HILBERT SPACES

KI-YEON SHIN

1. Introduction

Let (H,||-1|,(-,-)) denote a real Hilbert space and let I, S; represent
the intervals [0, T],{—r,¢], respectively where 0 < T < o0, t € I and
r 2 0. For a compact interval J C R, we shall denote by C(J, H)
the Banach space of all continuous functions from J into H endowed
with the supremum norm || - (g and by Lep(J, H) the class of
all Lipschitz continuous functions from J into H. And we denote by
B, (X) the closed ball {z € X : ||z||x < r} for positive constant r.

In this paper we apply the Method of Lines to establish the existence

of unique strong solution of the following type of nonlinear abstract
integro- differential equation :

(1.1) %(t) + Au(t) = G(t,u(t), F(u)(t)), for a.e. t € (0,T)
u=¢on Sy, ¢ € Lip(Sy, H),

where we assume the followings :

(H1) : The single valued nonlinear operator A : D(A) C H — H

satisfies

(a) maximal monotonicity. i.e.,
(Au— Av,u —v) >0 for all u,v € D(A)

and R(I + A) = H,
(b) 0 € D(A)
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(H2) : The mapping G :I x H x H — H satisfies

(a) Gt u, v} € M(1 + |ju|| +{v]]) forall t € I and u,v € H
where M is a positive constant,
(b) For all t;,t2 € I, uy,uy,vy,v; € B (H)

|G (21, u1,v1) — Gt2, uz, v2 )| < [|R(t1) — R(Z2)]|
+ Me{||lur =~ ual + fjvr — v2])

where h : I — H is a continuous function of bounded variation
and M, is a positive constant depending on r.
(H3) : The nonlinear operator F is a Volterra operator {(cf. {1]) which
maps C(St, H) into C(St, H) satisfying

() [F(u)llcsr,my < M(1+ lullosy,q) for all v € C(S7, H)

(b) | F(u) — F(v)|lcse, iy < M|l — v|lcsy,my for all u,v €
B.(C(St,H)) and

(¢) there exists a continuous function L : Ry — R, such that

1EC(®) — F)) < It~ siElullocsr.m) + | ellum s, m)

for all t,s € I and v € Lip(St, H)

We are now to show several previous results for the similar equations.
They all have got the Method of Lines in common even having different
conditions.

1. Necas [3] has solved the equation in Hilbert space

Tty + Ault) = 1), te(O.T)
u(0) = uq

(1.2)

where A is 2 maximal monotone operator, ug € D(A), and f : [0,T] —
H is a continuous function of bounded variation.

2. Kartsatos and Zigler [2] have proved the existence of a unique weak
solution of the following equation in a reflexive Banach space X whose
dual is uniformly convex :

%‘ti(t) + Au(t) = G(t,u(t)), t€(0,T]
u(0) = up

(1.3)
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where 4 : D{A} C X — X is m-accretive operatorand G : [0, T]x X —
X satisfies the Lipschitz-like condition

(1.4) 1G(¢, 2} — G(s, p)ll x < [jR(2) — A(s)llx + Lil= — vlix

for all t,s € [0,7] and all 2,y € X with a continuous function of
bounded variation A and a positive constant L. We note that the
condition (4) is global in X.

3. Kacur [1] considered a paticular case G(¢, u(t), F(u)(t))

= G(t, F(u)(t)) of (1) in the Lion’s set-up (i.e., there are reflexive space
V and Hilbert space H such that VN H is dense in V and H) with the
following assumptions :

(Al) A:V — V* is a maximal monotone operator satisfying
(1.5) < Au,u >2 |[ullp(llul) = Ci]lull* - C2

Here < -,- > denotes the duality product and p : Ry — R4
satisfies the condition p(s) — oo as s — oo.

(A2) G:Ix H — H satisfis the Lipschitz condition
(1.6) (|Gt u) — G(s, v}l < C[2 — s|(1+ [lull) + flue — v]l]

for ali t,s € I and u,v € H.
(A3) The Volterrl operator F satisfies

| F(u) — F(v)ltese,m < v —vlicise.m
for all u,v € C(St, H), and

M) — P < b= sl Lullotse, 1)1+ I el sr 1)

forallt,s € I,s < t, and u € Lip(St, H)

In this paper, we weaken the global Lipschitz conditions-(1.4), (A2)
and (A3) and take more general nonlinear mapping G into consider-
ation. Moreover, we do not assume any coercivity on the operator A
as in (Al). Instead, we assume 0 € D(A) which is not a very strong
condition. It is obvious that (A2) and (A3) imply our hypotheses (H2)
and (H3). But the reverse is not true in general.
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2. Main Results
To apply the Method of Lines, we follow the following procedure :
For any positive integer n we consider a partition {t7} defined by ¢} =
T
Joh h= e Setting ug = #(0), we successively solve for u € D(A)

the equation

U — uj
(2,1) T +AU. - G(t;’) 7 l?F(u l)(t;‘))
where
(2.2)
¢ on 50’
- #(0) on {0, A],
u,_; = ;
T i b - L - ) for b€ B8, =1,

u}_, on [t],T}.

The existence of unique u} € D(A) satisfying (2.1) is a consequence
of maximal monotonicity of the operator A. We first show, using (H1}),
(H2)-(a), and (H3)-(a), that flu}|| £ M for all » and j = 1,2,...,n
where M is a positive constant independent of 7, k, and n. Then we

prove that %Mu;‘ ~ul || £ M. After all we define a sequence {"} C
Lip(St, H) given by

$(t) for t € Sy,
u?—l + %(t *t;‘—l)(“? u;_ T )forte (tJ-utn]

23 -1
and a sequence {u"} of step functions mapping from (—h,T] into H
given by

(2.4) un(t)) = { #(0) for t € (—h,0],

u® for t € (7

3 Jl’)

After proving some a priori estimate for {2"} and {u™} we establish
the following main result.
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THEOREM 1. Let hypotheses (H1)-(H3) be satisfied and let ¢(0) €
D(A). Then there exists unique strong solution u € Lip(St,H) of
(1.1) in the sense that u = ¢ on So, 5 € L>(I,H), Au € L>(I, H)
and equation (1.1) is satisfied a.e. on I.

3. Proofs of Main Result
We shall denote by

u;‘ —ul
Z;‘ = '_'“h—]s = G(t}3 - l?F(uj l)(tn)
for j = 1,2,...,n. For notational convience, we shall supress the

superscript n sometimes. In the sequel, we denote by M a generic
constant independent of j, h, and n.

LEMMA 1. Let the hypotheses (H1), (H2)-(a), and (H3)-(a) be satis-
fied and let ¢(0) € D(A). Then jju,j| < M foralln andj =1,2,...,n

Proof. From (H1), (Au — A0,u) > 0 which implies that (Au,u) >
—M||lu||* — M,, where M; and M, are positive constants. Now, from
(2.1) we have

Uy — Uy
&) (B o)+ (Auy,) = (05,0)
for all v € H. We put v = hu, to obtain
1 1
(32) glell® = s = Muhfju,||* - Mok < Rllg; |l ;.
Using (H2)-(a) and (H3)-(a), we get
2 _ 2 2
ol = Rl < MACL+ mas [l

for:=1,2,...,n. Summing up the above inequality for : = 1 to j, we
obtain

7
booll? < MO+ 3 max fual?).
=1 - -

Hence we have

ax flue]]® < M(1+ hz max HUkH ).
=1 7
Application of Grownwall’s Lemma gives the required result.

l<k<
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LEMMA 2. In addition to the hypotheses of Lemma 1, we assume
that (H2)-(b) and (H3)-(b)(c) are also satisfied. Then ||z;|| < M for
allnandj;=12,...,n.

Proof. From (3.1) for j =1 and v = 2;, we have ||z(]| £ M for all
n. Also, we get

(zj,v) + (Au; — Au,_y,v) = (2,-1,0) + (g; — gj—1,v)

forall v € H and j = 2,3,...,n. Putting v = z,, we have [[z;|| <
fiz-1lf + l9; — g,-1|. Using Lemma 1, (H2)-(b), and (H3)-(b)(c), we
obtain an estimate

lgs = gs-1ll < (B8} = A{ts-)f] + MA(|jzi- |

thy_) — ti_y dti;..p

+ ”—h*—ﬂmsw.m +1+§ 3 fzeots, o))
+ ||A(t.) — h(t—1 )]l + MA(1 + Joax [zll).

Therefore we have for i = 1,2,...,n;
ol = Nzvcal < WACE) ~ h(tac)ll + MAQL + pmax. [zl

Summing up the inequality for ¢ = 1 to j, we obtain

25l < M(1+ R ) max lzl])-
=1 T =

Proceeding similarly as in Lemma 1, we get the required result.

REMARK 1. Lemma 1 and Lemma 2 imply that
n n M n n
127 —u™O < —, ") = 2"(s) < Mt — 5]

and [[2"(2)[| + fu(t)l} < M for all n and t,s € I.

Again, for the notational convenience, we shall denote by

(3.3) w™(t) = G(t*,ul_y, F(d,—1 )(t])), for t € (¢7_1, 7], 1< j < n.
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Then (2.1) can be rewritten in the form
d” .
(3.4) pTe (t) + Au™(t) = w"(¢), for t € (0,7},

where 4 denotes the left-derivative. Also, we have

(3.5) /0 " Aun(s)ds = o — 2°(t) + fo " 0™(s)ds.

LEMMA 3. There exists u € Lip(St, H) such that u = ¢ on Sy and
2* = u in C(Sy, H).

Proof. From (3.4) for t € (0,7 and for all v € H we have

( Z"(t) — m(t),v)+(Au“(t)—Au“‘(t) v} = (w"(t) — w™) 2.

Yor v = u™(t) — Au™(t), using monotonicity of A and the fact

oS m(t) ~ S 0), (1)~ 2 (0) = T O,
we get

1 d— n m 2
! ") = ="l

< (-0 w00, (O —u ()~ () e (1)
+ (07 (1) — w™(2), () — (1))
Now,
7€) = 0™ ()] < enm(®) + " = s,
where
cam(t) = [[A"(2) = B (1) + M(19"() ~ ™ (0)
() = 2= D)l 4 i) — 2~ )

+lan_y — 2" fles my + lEm—1 — 2" lecs., ;)
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for A™(t) = h(t}), ¥"(t) =17, t € (¢7_, 7], R*(0) = A(0), ¥™(0) = 0.
Clearly A™(t) — h(t) and #"(¢) — ¢ uniformly on I as n — oo. Hence
we have the estimate

d_ m n
S0 = 2O < Mleam + 12" = 2™ 25,

where {€am} is a sequence of numbers such that €,,, — 0 on I as
n,m — oco. Integrating over (0, s) and taking supremum for s € (0, ¢}
on both sides, we get

t
2" ~ Zm"?:(s‘,m < M(epm - T 'f‘/o 2" — 2™ "20(3. ,i)ds)-

Applying Grownwall’s Lemma, we conclude that there exists
u € C(St, H) such that 2™ — » in C(ST, H). Obviously, u = ¢ on S,
and from Remark 1, u € Lip(St, H).

Proof of Theorem 1. Proceding similarly as in [2], it is easy to show
u(t) € D(A) for t € I, Au™(t) — Au(t) (weakly), and Au(t) is weakly
continuous in ¢. From (3.5), for every v € H, we have

] (Au™(s),v)ds = (uo,v) — (2°(£),v) + / (0™ (s), v)ds.
0 0

Using Lemma 3 and bounded convergence theorem, we pass through
the limit for » — oo to obtain

(3.6)
[ (ue), 915 = (an,0) ~ (), ) + [ (@s,u(s), Fla(s), 0.
Since Au(t) is Bochner integrable, (3.6) implies that
%(t} + Au(t) = G(t,u(t), F(u)(t)) forae. tel

Now, we show the uniqueness of strong solution. Let u; and uy be
two strong solutions of equation (1.1). Let u = u; — 4y and let r =
maxyefo,71{l|u1 ]|, ffu2]|}. Then for ae. ¢ € I, we have

(526, u(00) + (An() ~ Aualt), u(t)
= (Gt ur(8), Plua)(1)) ~ G(t,ua(t), Flua)(), u(t)).



The method of lines to integro-differential equations 117

Hypotheses (H1), (H2), and (H3) imply that

d
SO < Mllullbs,my  for ae. tel,

where M. is a positive constant depending on r. Integrating over (0, s)
and taking supremum both sides for s € (0,¢) we get

t
lulZ s, a0, < M; / allEqs, snds.

From Grownwall’s Lemma, u(¢) = 0 on I.
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