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COMMON FIXED POINTS OF
WEAKLY* COMMUTING MAPPINGS

Y. J. CHo, S. M. KANG AND M. S. KHAN

1. Introduction and Preliminaries

The concept of 2-metric spaces has been investigated initially by
Gabhler in a series of papers [1]-{3] and has been developed extensively
by Gahler and many others.

A 2-metric is a set X with a real-valued function d on X x X x X
satisfying the following conditions:

(M;} For twe distinct peints z,y in X, there exisis a point z in X
such that d{z,y, z) # 0,
(M) d(z,y,2z) = 01if at least two of x,y, 2 are equal,
(M3) d(x)y»z) = d(x: Z, y) = d(ya Z, x),
(M) d(z,y,2) < d(z,y,u) +d(z,u,z) + d(u,y,z) for all z,y,z,u in
X.
Then d is called a 2-metric for the space X and (X,d) is called a 2-
metric space. It has been shown by Gahler {1} that a 2-metric d is
non-negative and although d is a continuous function of any one of
its three arguments, it need not be continuous in two arguments. If
it is continuous in two arguments, then it is continuous in all three
arguments. A 2-metric d which is continuous in all of its argument will
be called continuous.

On the other hand, a number of mathematicans ([4]-{15], {17], [19]-
[29]) have studied the aspects of fixed point theory in the setting of
the 2-metric spaces. They have been motivated by various concepts
already known for ordinary metric spaces and have thus introduced
analogues of various concepts in the frame work of the 2-metric spaces
Especially, Khan [7} and Naidu-Prasad [17] introduced the concept
of weakly commuting pairs of self-mappings on a 2-metric space and
the notion of weak continuity of a 2-metric, respectively, and they
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have proved several common fixed point theorems by using the weakly
commuting pairs of self-mappings on a 2-metric space and the weak
continuity of a 2-metric.

In this paper, we give some common fixed point theorems for weakly*
commuting mappings from a complete 2-metric space and some theo-
rems on the convergence of self-mappings on a complete 2-metric space
and the existence of their fixed points. Our main theorems extend the
Banach Contraction Principle in 2-metric spaces

Now, we shall give some definitions:

DEFINITION 1.1. A sequence {z,} in a 2-metric space (X, d) is said
to be convergent to a point z in X if im,,_, d{z,,%,2) = 0 for all z
in X. Then z is called the limit of the sequence {z,} in X.

DEFINITION 1.2. A sequence {z,} in a 2-metric space (X, d) is said
to be a Cauchy sequence if limy n—oo d(Tm,Za,2) = 0 for all 7z in X.

DEFINITION 1.3. A 2-metric space (X, d) is said to be complete if
every Cauchy sequence in X is convergent.

Note that in a 2-metric space a convergent sequence need not be a
Cauchy sequence, but every convergent sequence is a Cauchy sequence
when the 2-metric d is continuous on X ([17]).

DEFINITION 1.4. Let S and T be two mappings from a 2-metric
space (X,d) into itself. Then a pair (S, T) is said to be weakly com-
muting on X if d(STz,TSx,z) £ d(Tz,Sz,z) for all z,2z in X

DEFINITION 1.5. Let S and T be two mappings from a 2-metric
space (X, d) is said to be weakly* commuting on X if d(STz,TSz,2) <
d($%z,T%z,z) for all z,z in X.

Note that, if S = § and T? = T in Definition 1.5, then a weakly™
commuting pair (S, 7T) is weakly commuting on X. A commuting pair
(5,T) on X is also weakly commuting and weakly* commuting, but
the converses are not true.

DEFINITION 1.6. A mapping S from a 2-metric space (X, d) into
itself is said to be sequeniially continuous at z if for every sequence {z,}
in X such that lim d(z,,z,z) =0forall zin X, lim d(Sz,,S5z,2) =

n—0oo
0.
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DEFINITION 1.7. Let S and T be two mappings from a 2-metric
space {X, d) into itself. Then a sequence {z,}in X is said to be asymp-
totically $%-regular with respect to T2 if im o0 d(5%2n, T22,,2) =0
for all z in X.

Throughout this paper, let (X, d) be a 2-metric space with the con-
tinuous 2-metric d. Let N and R* be the set all natural numbers
and non-negative real numbers, respectively, and F the family of map-
pings ¢ from (R*)® inte R such that ¢ is upper semicontinuous and
nondecreasing in each coordinate variable, for any ¢ > 0,

¢(t,t,0,0t,0) < B¢, and ¢(4,¢,0,0,at) < ft,
where f=1fora=2and S <1 for a <2,
7(t) = ¢(t,t,a1t, ast, ast) < t,

where v: R* — R* is 2 mapping and a; + a3 + a3 = 4.

For aur_main theorems, we need the following lemmas:

LEMMA 1.1 ({16]). For anyt > 0, v(t) <t if and only if lim ~™(¢)

n—oo

= 0, where 4™ denotes the n-times composition of v.

Let A, S and T be mappings from a 2-metric space (X, d) into itseif
such that

(1.1) AX)YCc S(X)nT(X),
(1.2)
d*(Az, Ay, z) < ¢(d*(Sz,Ty,2),d(Sz, Az, z) - d(Ty, Ay, 2),

d(Sz, Ay, z) - d(Ty, Az, z),
d(Sz, Az, z) - d(Ty, Az, 2),
d(Sz, Ay, z) - d(Ty, Ay, 2)),

where ¢ € F.

Then, by (1.1) since A(X) C T(X), for any arbitrary point zo € X,

there exists a point z; € X such that Azgq = T'zy. Since A(X) C 5(X),

for this point z,, we can choose a point z, € X such that Az; = Sz,
and so on.

Inductively, we can define a sequence {y,} in X such that
(1-3) Yan = T22041 = AT2n and yop41 = STont2 = AZ2a41
forn=0,1,2,---.
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LEMMA 1.2. Let A, S and T be mappings from a 2-metric space
(X,d) into itself satisfying the conditions (1.1} and (1.2). Then we
have the following:

(1) for every n € NO) d(yn, yn+lyyu~!~2) = 0’
(2) for every t,j,k € No, d(yi,y,,yx) = 0, where {y,} is the sequence
in X defined by (1.3).

Proof. (1) In (1.2), ta,king T = T2n42, Y = T2n+1 and z = Yon, WE
have

P (Y2n42: Vant1, Y2n) = 2 (ATons2, AT2041,Y2n)

< $(d*(Y2nt1, Y20, Y20 ),
A(Y2nt1,Y2n+2:Y2n) - AY2n, Y2n+1,Y2n )
d(Y2n+1,Y2n+1,Y20) - d(Y2n, Y2n+2,Y20),
d(Yon+1, Y2n+2,Y2n) - AYon, Yont2, Y2n )
d(Y2n+1, Y2nt1,Y2n) - A(Y2n, Y2041, Y2n))

= ¢(0,0,0,0,0)

<0

and s0 d(¥2a+2,Y2n+1,Y2n) = 0. Similarly, we have

d(y2n+11 Y2n+2, y2n+3) =0.

Hence, d(yn, Yn+t1, Yns2) = 0 for every n € Ny.
(2) For all z € X’ let dn(z) = d(yn,yn-!-laz)a n= 0) la 23 Tt By (1)1

we have

d(yn! Ynit2, 2) < d(ynl Yn42, yn-l-l) + d(yrn Yn+1, Z) + d(yn+11 Yn+2, z)
= d(Yn, Ynt+1,2) + d(Yn41, Yn+2, 2)
= dn(2) + dat1(2).

Taking = T2p42 and y = 22,41 in (1.2), we have

d%n-l- 1(2) = d2 (y2n+2a Yont1y 2)
= d*(AZant2, AZ2n+1,2)
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< ¢(d2(312n+1, Y2n, Z), d(y2n+1,yzn+z,2) . d('yzm y2n+1,2),
d(y2n+1 yY¥2nt1, Z) ) d(y2n> Y2n+2, z})
d(y2n+l, Yont2, Z) * d(yZn; Y242, 2)1
d(y2n+1, Yan+1, Z) : d(y2m Y2n41, Z))
= $(d3,(2), dans1(z) - d(2n(2), 0,
d2n+1(2)(d2a(2) + d2n+1(2)),0)-
Now, we shall prove that {d,(z)} is a non-increasing sequence in R*.
In fact, suppose that dn,41(2) > d.(z) for some n € N. Then, for
some & < 2, dpy1(2) + dn(z) = adny1(2z). Since ¢ is non-decreasing in
each variable and 8 < 1 for some a < 2, by(1.2), we have
d%n-}-l(z) S ¢(d§n+1(2), d§n+l(z)$0’ ad§n+1(Z), 0)
< ,Bd%n“(z)
- A2 TP
T~ SInt 1<)

and

dgn+‘2(z) < ¢(dgn+2(z)idgn+2?0) 0, ad§n+1 ()
< Bd3ata(2)
< d§n+2(z)'
Hence, for every n € Ny, d2(2) < fd%(z) < d%(z), which is a contra-
diction. Therefore, {d,(2)} is a a non-increasing sequence in R*.
By using the fact that the sequence {d,(z)} is non-increasing, we have
the following:
A. do(yo) =0 => d,(yy) =0 for every n € N,
B. dp_1(ym)=0forany n € N = d,(ym)=0foralln >m-1,
C. dp-1=0=dn_1(yn)for 0 <n <m—1and (My)
- dn(ym) < dn(ym—l) < dn(ym-Q) <- “
D. da(yn41) =0 = dn{ym)=0for 0 <n<m-1.
Thus, we have shown d,(y,) =0forall mn=20,1,2,.--.
E. d,_1(y;) =0=d,_1{yx) forany 7,7,k € Ny with z < ;

= d(yl) Y yk) S d(y!') Yy—1, yk)
Therefore, by using the above inequality in K, repeatedly, we have

d(yi) yj)yk) S d(yl’ yt-nyk) - O)
which means that d(y,,y,,yx) = 0 for every 7,7,k € Np.
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LEMMA 1.3. Let A, § and T be mappings from a 2-metric space
(X,d) into itself satisfying the conditions (1.1} and (1.2). Then the
sequence {y,} defined by (1.3) is a Cauchy sequence in X.

Proof. In the proof of Lemma 1.2, since {d.(z)} is a non-decreasing
sequence in RY, by (1.2), we have

di(2) = (31,92, 2)

= dz(A:cl, A.‘Bz,z)

S (ﬁ(dg(z)ado(z) N dl(z)‘) 03 03 (dO(z) + dl(z))dl(z))

< ¢(dj(2), d(2), d3(2), 3 (=), 2d3(=))

= ¥(d3(2))-
In general, we have d2(z) < v"(d2(2)), which implies that, if dy(2) > 0,
by Lemma 1.1,

Jim () £ Jim 4" (&() =0,

Therefore, we have lim d,(z)) = 0. For do(z) = 0, since {dn(z)} is
non-increasing, we have clearly lim d,(z) = 0.
n-—+00

Now, we shall prove that {y,} is a Cauchy sequence in X. Since
lim d,(z) = 0, it is sufficient to show that a subsequence {y2n,} of
n—00

{yn} is a Cauchy sequence in X. Suppose that the sequence {yzn} is
not a Cauchy sequence in X. Then there exist a point a € X, an € > 0
and strictly increasing sequences {m}, {ni} of positive integers such
that £ < np < my,

(14) d(y'ln“ y2m“a) >¢ and d(y2n“y2mk—2aa) <€
for all k =1,2,.--. By Lemma 1.2 and (M,), we have

d(eru, yY2m, :a) - d(eru, sYome—25 a) S d(meg —2:Y2my, a)
< dymy—2(a) + dam, —1(a).

Since {d(y2n,, Y2m,,a) — ¢} and {e~ d(Y2n,» Y2m, -2, a)} are sequences
in R* and lim d;(a) = 0, we have
oo

(15) klirn;o d(y2ﬂk1y2mk’a) =¢ and klin;o d(yan s Y2my -2, a) e



Common fixed points of weakly® commuting mappings 101

Note that, by (My)

(1.6) ld(z,y,a) — d(z,y,a)] < d(a,b,z) + d(e,b,y)
for all z,y,a,b ¢ X.

Taking £ = yon,, ¥ = @, @ = Y2m, ~1 and b = yamm, in (1.6) and using
Lemma 1.2 and (1.5), we get

(1.7) len;o d(Y2n., Y2m, —1,2) = €.

Once again, by using Lemma 1.2, {1.5) and (1.6), we get

(18) khm d(yan-l-I’y:ng:a) =€ a'nd hm d(y2nk—hy2mk-—lua) = €
—00 k—o0

By (1.2), we have

(1.9)
*(Y2my s Y2nut1, @) = d*(ATom,, ATy, 41, 0)
< A (Yamu—1s V2nir @),
d(Yzmo—1, Y2me> @) * E(Y2n,, Y2ne 41, @),
d(Y2my—1,Y2n,+1, @) - A(Y2n,, Y2ma» 2)s
d(Y2my—1,Y2my, @) - d(Y2n,, Yam,, @),
A Yomy—1,Vang+15 @) - AY2ngr Y20, +1,0))-

Using (1.4), (1.5), (1.6) and (1.7), since ¢ € F, we have
€ < 4(¢%,0,€%,0,0) < (") <

as k — oo in (1.9), which is a contradiction. Therefore, {y2,} is a
Cauchy sequence in X.

2. A Common Fixed Point Theorem.

By using Lemma 1.3, we have the following:
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THEOREM 2.1. Let A, § and T be mappings from a complete 2-

metric space (X, d) into itself satisfying (1.1), (1.2) and the following
conditions:

(2.1) S and T are sequentially continuous,

(2.2) the pairs (A4, S) and (A, T) are weakly® commuting on X,

(2.3) there exists a sequence which is asymptotically A%-regular with
respect to §% and T2.

Then A, § and T have a unique common fixed point in X.

Proof. By Lemma 1.3, since the sequence {y.} defined by (1.3) is
a Cauchy sequence in X and (X,d) is a complete 2-metric space, it
converges to some point u in X. Note that subsequences {y;,} and

{y2n+1} of {ya} also converges to u. Since S and T are sequentially
continuous,

Syz,, = STa:2"+1 — Su and Tyz,,.H = TS$2R+2 — Tu as n — co.
By (My) and (1.2), we have

A(STront1, TSTonte,2)

= d(SAz3n, TAZong1, 2)

L d(SAz3,, TATzn41, ASTo0) + d(SAzx3n, ASTyy, 2)
+ d(ASz2,, TATon41,2)

< d(SA30, TAZon gy, AST20) + d(SAz3n, ASTan, 2)
+ d(ASz3n, TAZ2n 41, ATZon41) + d(ATz2n41,TAZ2n41, 2)
+ d(AS23n, ATTop 41, 2)

< d(SAz24, TAx3n41,ASZ20) + d(SAz2p, ASz2,, 2)
+ d(ASz20, TAT3041, AT22041) + d(AT 22041, TAZ2041,2)
+ [4(d* (8?20, T 2n 41, 2),
d(S%z49y, ASTa,, z) - d(T?z9p41, ATZ2ns1, 2),
d(Szzzn,Ang,,H,z) d(T*22n41, ASz2x, z),
d(Sz.’tgn, ASz2,,2)- d(Tza:z,,.,.;, ASz2,, 2),
d(8%220, ATT2n41,2) - d(T? 22041, ATZ2n41,2))) 3

S d(SAz2,,TAz3p41,AST20) + d(SA22,, ASTop, 2)
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+ d(ASz20, TAz2n41, AT 220 41) + (AT 22041, T AT2041, 2)
-'i- [¢(d2(52$2n, T2332n+11 Z)a
{d(S%z20, AST2n, SATs, + d(S%2op, SATon, 2)
+ d(SAzqn, AS12n,2)} - {d(T% 22041, ATZ2041, TAT20+1)
+ d(T?z9041, TAT2041,2) + (T Azon g1, AT 22041, 2} }s
{d(5%22n, AT Ton 41, TAZ2n41) + d(S?22n, T ATsns1, 2)
+d(TAz2041, ATzo041,2)} - {d(T? 23041, AST2n)
+ d(T* 23011, SAZ2,,2) + d(SAZ2n, AST2n, 2)},
{d(Sza:g,,, ASz2,, SAxz,) + d(Szzz,,, SAzan, z)
+ d(SAz2n, ASz90,2)} - {d(T? 22041, AS220, SAT2n)
+ d(T 22041, SAT2n, 2) + d(SAz2n, ASTon, 2)},
{d(S* 220, AT 22041, TAZ2n41) + d(5% 220, T AZ2n41, 2)
+ d(TAz2ni1, ATZ2041,2)} - {d(T 29041, ATZ2041, TAT2n41)
+ d(TZ2n41, TAZong1,2) + AT AZsni1, ATZ2n11,2) )]

Letting n — oo and d(Su, T, z) > 0, we have

N

d(Su,Tu,z) < [p(d*(Su,Tu, 2z),0,d*(Su, Ty, z),0,0)]
< In(d*(Su, Tu, 2))]?
< d{Su, Ty, z),

which is a contradiction. Therefore, Su = Tu.
Next, we shall show that Au = Su. By (My) and (1.2), we have

d(SAzo,, Au, 2) < d{SAz2p, Au, ASzq,) + d(SAzzn, ASTon, 2)
+ d(ASz9,, Au, z)
< d(SAzon, Au, ASzo,) + d(SAxy,, ASz2p,2)
+($(d2(S 3, T, 2,
d(S%22,, AS29p, 2) - d(Tu, Au, z),
d{5%22,, Au, 2) - d(Tu, ASzqa, 2),
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d(5%z2n, ASTop,2) - d(Tu, ASzan, 2),
d(5%22n, Au, 2) - d(Tu, Au, z))}¥
< d(SAxon, Au, ASTe,) + d(SAx2n, AST2n,2)
+ [¢(*(S*z2n, Ty, 2),
{d(5%z3, ASzon,SAZ2,) + d(S%230, SAT2,, 2)
+ d(SAzz,, AS220,2)} - d(Tu, Au, z),
d(Sz:cg,,, Au, z)- {d(Tu, ASzapn, SAz3,, 2)
+ d(Tu,SAz2n,2) + d(SAz2,, AST2n, 2)},
{d(5%z2n, AST20, SAT2n) + d(S%z20, SATon, 2)
+ d(SAzgn, ASz24,2)} - {d(Tu, ASz2p,, SAZ2,)
+ d(T'u, SAzyp, 2) + d(SAzn, AST2n, 2}},
d(S?z3,, Au, z) - d(Tu, Au, 2))]3 .
Letting n — oo and d(Su, Au, z) > 0, we have
d(Su, Au, z) < [¢(0,0,0,0,d*(Su, Au, z))]?
< [A(d*(Su, Au, 2))}*
< d(Su, Au, z),

which is a contradiction. Therefore, Au = Su = Tu.
Finally, in order to prove that u is a common fixed point of 4, §
and T, using {1.2) again, we have

d(Au, Azgpp1,2) <[$(d(Su, T2ans1,2),
d(Su, Au, 2z} - d(Tzont1, AZ2n+1,2),
d(Su, Az2p41,2) - d(Txon41, Au, 2),
d(Su, Au, z) - d(Tzon41, Ay, 2),
d(Su, Azant1,2) - d(TZont1, AZ2as1,2))}7.
Letting n — oo and d( Au,u, z) > 0, we have
d(Au,u,z) < [¢(d*(Au,u,2),0,d*(Au,u, z),0,0)] ¥
< (e (Au, u, 2))]
< d(Au,u,z),
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which is a contradiction. Therefore, Au = Su = Tu = u, that is, u is
a common fixed point of 4, § and T.

The uniqueness of the common fixed point u follows easily. In fact,
let uy and u; be common fixed points of A, $ and T. By (1.2),

d(uy,us,z) = d(Auy, Aug, 2)
< [¢(d*(Suy, Tuy, 2),d(Suy, Auy, 2) - d(Tug, Aug, z),
d(Suy, Auz, z) - d(Tuz, Auy, 2),
d(Suy, Aui, z) - d(Tuz, Auy, z),
d(Suy, Aug, z) - d(Tus, Aug, 2))]?
< [¢(d®(u1,u2,2),0,d*(uy, 1y, 2), 0, 0)]%

< [y(d¥(us, w2, 2))}2

42¢
<@ \21-1,.32,2),

which is a contradiction. Therefore, u is a unique common fixed point
of A, Sand T.

REMARK. (1) Theorem 2.1 is an extension of Theorem 2.5 [18] to
2-metric spaces.

(2) In Theorem 2.1, if « is a common fixed point of A, S and T
then A is sequentially continuous at u.

3. Convergence of Self-mappings on a 2-metric Space and
Their Fixed Points

In this section, we give two theorems on the convergence of self-
mappings from a 2-metric space into itself and the existence of their
fixed points. The following theorems follows easily from Theorem 2.3.

THEOREM 3.1. Let {A,}, {S.} and {T,.} be sequences of mappings
from a complete 2-metric space (X, d) into itself such that
(3.1) the sequences {A,}, {Sn} and {I,,} converge uniformly to self-
mappings A, § and T on X, respectively,
(3.2) S and T are sequentially continuous.
Suppose that, forn =1,2,--- | z,, is a common fixed point of A, and
Sp, and y, is a common fixed point of A, and T,.
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Further, let self-mappings A, S and T on X satisfy the conditions
(1.1), (1.2), and (2.1). If z is a common fixed point of A, § and T and
sup{d(zn,z,2)} < oo and sup{d(yn,z,z)} < oo for all z € X, then
Zp, = x and yp, = T as n — oo.

THEOREM 3.2. Let {A,}, {S.} and {T,} be sequences of mappings
from a complete 2-metric space (X,d) into itself such that, for n =
1, 2, Sty
(3.3) Ap(X) C Sp(X) N Tou(X),

(3.4) the pairs (A,,S,) and (A,,T,) are weakly* commuting on X,

(3.5)
d*(Anz, Any, z) < $(d2(Snz, Tay, 2),
d(Snz, Anz,2) - d(Tny, Avny, 2),
d(Snz, Any, z) - d(Tpy, Anz, 2),
d(Snz, Apz,2) - d(Tphy, Anz, 2),
d(5nz, Any, 2) - d(Tny, Any, 2))

for all x,y,z € X, where ¢ € F.
If the sequences {A,}, {S.} and {T.} converges uniformly to self-
mappings A, S and T' on X, respectively, then A, S and T satisfy the
conditions (1.1), (1.2}, and (2.1).

Further, the sequence {z,} of unique common fixed points of A,,
S and T, converges to a unique common fixed point z of A, S and T
if sup{d(x,z,2)} < co.
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