# ON AN ANALYTIC CONTINUATION OF THE MULTIPLE HURWITZ $\zeta$-FUNCTION 

TaE-Young Seo and Bo-Myoung Ok

## 1. Multiple Hurwitz $\zeta$-function and multiple Bernoulli polynomials

In [2], E.W. Barnes defines the $r$-ple Hurwitz $\zeta$-function, for Re $s>$ $r$.

$$
\begin{equation*}
\zeta_{r}\left(s, a \mid w_{1}, w_{2}, \cdots, w_{r}\right)=\sum_{m_{1}, m_{2}, \cdots, m_{r}=0}^{\infty} \frac{1}{(a+\omega)^{s}} \tag{1}
\end{equation*}
$$

where $\omega=m_{1} w_{1}+m_{2} w_{2}+\cdots+m_{r} w_{r}$ and also gives a contour integral representation

$$
\zeta_{\mathrm{r}}\left(s, a \mid w_{1}, w_{2}, \cdots, w_{r}\right)=\frac{i \Gamma(1-s)}{2 \pi} \int_{L} \frac{e^{-a z}(-z)^{s-1}}{\prod_{k=1}^{r}\left(1-e^{-w_{k} z}\right)} d z
$$

where the conditions for $a$ and $w_{1}, w_{2}, \cdots, w_{r}$ and the possible contour $L$ is given by [2].

DEFINITION 1. In (1), we restrict these when $w_{1}=w_{2}=\cdots=w_{n}=1$, that is to say, $a>0, \operatorname{Re} s>n$

$$
\begin{equation*}
\zeta_{n}(s, a)=\sum_{k_{1}, k_{2}, \cdots, k_{n}=0}^{\infty}\left(a+k_{1}+k_{2}+\cdots+k_{n}\right)^{-s} \tag{2}
\end{equation*}
$$

$\zeta_{n}(s, a)$ is called as the $n$-ple multiple Hurwitz $\zeta$-function.

Theorem 2. ([2]) $\zeta_{n}(s, a)$ can be continued to a meromorphic function with poles $s=1,2, \cdots, n, a>0$.

Proof. For by the contour integral representation

$$
\zeta_{n}(s, a)=\frac{i \Gamma(1-s)}{2 \pi} \int_{c} \frac{e^{-a t}(-z)^{s-1}}{\left(1-e^{-z}\right)^{n}} d z,
$$

where the contour $\mathbf{C}$ is given as Fig.1, the integral is valid for $a>0$ and all $s$, so $\zeta_{n}(s, a)$ has possible poles only at the poles of $\Gamma(1-s)$, i.e., $s=1,2,3, \cdots$. But by the series definition $\zeta_{n}(s, a)$ is analytic for $\operatorname{Re} s>n$.


Fig.I

In particular, when $n=1, \zeta_{1}(s, a)=\sum_{k_{1}=0}^{\infty}\left(a+k_{1}\right)^{-s}=\zeta(s, a)$. This is the well-known Hurwitz $\zeta$-function.

Definition 3. We define the $k$-th Bernoulli polynomials of order $n,{ }_{n} B_{k}(a)$, whose first derivative ${ }_{n} B_{k}^{(1)}(a)$ appears as the cofficient of $z^{k}$ in the expansion

$$
\begin{align*}
\frac{(-1)^{n} z e^{-a z}}{\left(1-e^{-z}\right)^{n}}= & \frac{(-1)^{n} A_{n}(a)}{z^{n-1}}+\frac{(-1)^{n-1} A_{n-1}(a)}{z^{n-2}}+\cdots \\
& +\frac{A_{2}(a)}{z}-A_{1}(a)+\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k!}{ }_{n} B_{k}^{(1)}(a) z^{k} \tag{3}
\end{align*}
$$

which is valid in the annulus $\{z|0<|z|<2 \pi\}$.
Now, ${ }_{n} B_{k}(a)$ is called the Multiple Bernoulli polynomial.

## THEOREM 4.

$$
A_{s}(a)={ }_{n} B_{1}^{(s+1)}(a) \quad \text { and } \quad \frac{{ }_{n} B_{k+1}^{(2)}(a)}{k+1}={ }_{n} B_{k}^{(1)}(a)
$$

for $k=1,2, \cdots$.
Proof. We differentiate (3) with regard to $a$; we obtain

$$
\begin{aligned}
\frac{(-1)^{n} z e^{-a z}}{\left(1-e^{-x}\right)^{n}}= & \frac{(-1)^{n} A_{n-1}^{\prime}(a)}{z^{n-1}}+\frac{(-1)^{n-1} A_{n-2}^{\prime}(a)}{z^{n-2}}+\cdots \\
& +\frac{(-1) A_{2}^{\prime}(a)}{z^{2}}+\frac{A_{1}^{\prime}(a)}{z}+\sum_{k=1}^{\infty} \frac{(-1)^{k} B_{k}^{(2)}(a)}{k!} z^{k-1}
\end{aligned}
$$

Equatting now coefficient of like powers of $z$ in (3) and we get $A_{n-q+1}$ $(a)=A_{n-q}^{\prime}(a), q=1,2, \cdots, n-1$ and $A_{1}(a)={ }_{n} B_{1}^{(2)}(a)$. Hence $A_{s}$ $(a)={ }_{n} B_{1}^{(s+1)}(a)$ and $\frac{{ }_{n} B^{(2)}{ }_{k+1}(a)}{k+1}={ }_{n} B_{k}^{\prime}(a)$. Thus, the fundamental expansion (3) may be written
(4) $\frac{(-1)^{n} z e^{-a z}}{\left(1-e^{-z}\right)^{n}}=\sum_{s=1}^{n} \frac{(-1)_{n}^{s} B_{1}^{(s+1)}(a)}{z^{s-1}}+\sum_{k=1}^{\infty} \frac{(-1)^{k-1}{ }_{n} B_{k}{ }^{\prime}(a)}{k!} z^{k}$
2. An analytic continuation of the multiple Hurwitz (function

THEOREM 5. $\zeta_{\boldsymbol{n}}(s, a)$ is a meromorphic function with simple poles at $s=1,2, \cdots, n$.

Proof. From (2), for Re $s>n$,

$$
\zeta_{n}(s, a)=\sum_{k_{1}, k_{2}, \cdots, k_{n}=0}^{\infty}\left(a+k_{1}+k_{2}+\cdots+k_{n}\right)^{-s}
$$

We know that

$$
\Gamma(s)=\int_{0}^{\infty} t^{s-1} e^{-t} d t=\left(a+k_{1}+\cdots+k_{n}\right)^{s} \int_{0}^{\infty} e^{-\left(a+k_{1}+\cdot+k_{n}\right) t} t^{s-1} d t
$$

Then we have, for $\operatorname{Re} s>n$

$$
\begin{aligned}
\zeta_{n}(s, a) \Gamma(s) & =\int_{0}^{\infty} \frac{1}{\left(1-e^{-a t}\right)^{n}} e^{-a t} t^{s-1} d t \\
& =\left(\int_{0}^{1}+\int_{1}^{\infty}\right) t^{s-1} e^{-a t} \frac{1}{\left(1-e^{-t}\right)^{n}} d t
\end{aligned}
$$

Now, when $|s| \leq c$, where $c$ is any positive number, we have

$$
\begin{aligned}
\int_{1}^{\infty}\left|t^{a-1} e^{-a t} \frac{1}{\left(1-e^{-t}\right)^{n}}\right| d t & =\int_{1}^{\infty} t^{c-1} e^{-a t} \frac{1}{\left(1-e^{-t}\right)^{n}} d t \\
& \leq \frac{1}{1-e^{-1}} \int_{1}^{\infty} t^{c-1} e^{-a t} d t
\end{aligned}
$$

There, the second integral in (5) converges uniformly in every compact subset in the whole complex plane $C$ and so represents an analytic function in $C$. On the ohter hand, the function $\frac{e^{t(n-a)}}{\left(e^{t}-1\right)^{n}}$ is analytic in a deleted neighborhood of zero and

$$
\lim _{t \rightarrow 0} t^{n} \frac{e^{t(n-a)}}{\left(e^{t}-1\right)^{n}}=\lim _{t \rightarrow 0} \frac{t e^{\frac{((n-a)}{n}}}{e^{t}-1}=1 \neq 0
$$

but

$$
\lim _{t \rightarrow 0} t^{n+1} \frac{e^{t(n-a)}}{\left(e^{t}-1\right)^{n}}=0 .
$$

Thus $\frac{e^{t(n-a)}}{\left(e^{t}-1\right)^{n}}$ has a pole of order $n$ at zero. Also, by (4), for $0<|t|<$ $2 \pi$

$$
\begin{aligned}
\frac{t^{s-1} e^{-a t}}{\left(1-e^{-t}\right)^{n}}= & { }_{n} B_{1}^{(n+1)}(a) t^{s-n-1}-{ }_{n} B_{1}^{(n)}(a) t^{s-n}+\cdots \\
& +(-1)^{n+2}{ }_{n} B_{1}^{(3)}(a) t^{s-3}+(-1)^{n+1}{ }_{n} B_{1}^{(2)}(a) t^{s-2} \\
& +\sum_{k=1}^{\infty} \frac{(-1)^{n+k-1}{ }_{n} B_{k}^{\prime}(a)}{k!} t^{k+s-2}
\end{aligned}
$$

Using this expansion and term by term integration (justified by uniform convergence) the first integral in (5) can be written

$$
\begin{aligned}
\int_{0}^{1} t^{s-1} & \frac{e^{-a t}}{\left(1-e^{-t}\right)^{n}} d t \\
\quad= & \frac{{ }_{n} B_{1}^{(n+1)}(a)}{s-n}-\frac{{ }_{n} B_{1}^{(n)}(a)}{s-n+1}+\cdots+\frac{(-1)^{n+2}{ }_{n} B_{1}^{(3)}(a)}{s-2} \\
& \quad+\frac{(-1)^{n+1}{ }_{n} B_{1}^{(2)}(a)}{s-1}+\sum_{k=1}^{\infty} \frac{1}{k+s-1} \frac{(-1)^{n+k-1}{ }_{n} B_{k}^{(1)}(a)}{k!}
\end{aligned}
$$

Consequently, for $\operatorname{Re} s>n$, we can write

$$
\begin{aligned}
& \zeta_{n}(s, a) \\
& =\frac{1}{\Gamma(s)}\left[\frac{{ }_{n} B_{1}^{(n+1)}(a)}{s-n}-\frac{{ }_{n} B_{1}^{(n)}(a)}{s-n+1}+\cdots+\frac{(-1)^{n+1}{ }_{n} B_{1}^{(2)}(a)}{s-1}\right]
\end{aligned}
$$

$$
\begin{align*}
& +\frac{1}{\Gamma(s)}\left[\sum_{k=1}^{\infty} \frac{1}{k+s-1} \frac{(-1)^{n+k-1}{ }_{n} B_{k}^{(1)}(a)}{k!}\right]  \tag{6}\\
& +\frac{1}{\Gamma(s)} \int_{1}^{\infty} \frac{t^{s-1} e^{-a t}}{\left(1-e^{-t}\right)^{n}} d t
\end{align*}
$$

As said before the thirdterm on the right in (5) is entire, and the series $\sum_{k=1}^{\infty} \frac{1}{k+s-1} \frac{(-1)^{n+k-1}{ }_{n} B_{k}^{(1)}(a)}{k!}$ is meromorphic in the complex plane with simple poles at $-k$ if $_{n} B_{k}^{(1)}(a) \neq 0, k=0,1,2, \cdots$. Since $\frac{1}{\Gamma(s)}$ is entire with zeros at $0,1,2, \cdots$, the right hand side of (6) is meromorphic on all of $C$ with simple poles at $s=1,2, \cdots, n$.

Corollary 5. The residue of $\zeta_{n}(s, a)$ at $s=r(r=1,2, \cdots, n)$ is $\frac{1}{(r-1)!}(-1)^{r+n}{ }_{n} B_{1}^{(r+1)}(a)$.

Proof. From (6),

$$
\begin{aligned}
\lim _{s \rightarrow r}(s-r) \zeta_{n}(s, a) & =\frac{1}{\Gamma(r)}(-1)^{r+n}{ }_{n} B_{1}^{(r+1)}(a) \\
& =\frac{1}{(r-1)!}(-1)^{r+n}{ }_{n} B_{1}^{(r+1)}(a) .
\end{aligned}
$$

## References

1. J. Bak and D.J. Newman, Complex Analysis, Springer- Verlag, New York, 1982.
2. E.W. Barnes, On the theory of the multaple gamma function, Philosophical Transactions of the Royal Saciety(A) XIX (1904), 374-439.
3. J. Choi, Determinants of Laplacians and multiple gamma functions, Ph.D. Dissertation, Flodia State Univ., 1991.
4. M. Rao and H. Stetkæer, Complex Analysis, World Scientific Publishng, 1991.
5. E.T. Whittaker and G.N. Watson, A Course of Morden Analysss (4th. Ed.), Cambridge Univ. Press, 1963.

Department of Mathematics
Pusan National University
Pusan 609-735, Korea

