Pusan Kyöngnam Math. J. 8(1992), No 2, pp. 235-240

ON AN ANALYTIC CONTINUATION OF THE MULTIPLE HURWITZ ζ -FUNCTION

TAE-YOUNG SEO AND BO-MYOUNG OK

1. Multiple Hurwitz ζ -function and multiple Bernoulli polynomials

In [2], E.W. Barnes defines the r-ple Hurwitz ζ -function, for Re s > r.

(1)
$$\zeta_r(s,a|w_1,w_2,\cdots,w_r) = \sum_{m_1,m_2,\cdots,m_r=0}^{\infty} \frac{1}{(a+\omega)^s},$$

where $\omega = m_1 w_1 + m_2 w_2 + \cdots + m_r w_r$ and also gives a contour integral representation

$$\zeta_r(s,a|w_1,w_2,\cdots,w_r) = \frac{i\Gamma(1-s)}{2\pi} \int_L \frac{e^{-az}(-z)^{s-1}}{\prod_{k=1}^r (1-e^{-w_k z})} dz,$$

where the conditions for a and w_1, w_2, \dots, w_r and the possible contour L is given by [2].

DEFINITION 1. In (1), we restrict these when $w_1 = w_2 = \cdots = w_n = 1$, that is to say, a > 0, Re s > n

(2)
$$\zeta_n(s,a) = \sum_{k_1,k_2,\cdots,k_n=0}^{\infty} (a+k_1+k_2+\cdots+k_n)^{-s}$$

 $\zeta_n(s,a)$ is called as the *n*-ple multiple Hurwitz ζ -function.

Received November 5, 1992. Revised

THEOREM 2. ([2]) $\zeta_n(s, a)$ can be continued to a meromorphic function with poles $s = 1, 2, \dots, n, a > 0$.

Proof. For by the contour integral representation

$$\zeta_n(s,a) = \frac{i\Gamma(1-s)}{2\pi} \int_{\mathbf{c}} \frac{e^{-at}(-z)^{s-1}}{(1-e^{-z})^n} dz,$$

where the contour C is given as Fig.1, the integral is valid for a > 0and all s, so $\zeta_n(s,a)$ has possible poles only at the poles of $\Gamma(1-s)$, i.e., $s = 1, 2, 3, \cdots$. But by the series definition $\zeta_n(s,a)$ is analytic for Re s > n.

Fig.I

In particular, when n = 1, $\zeta_1(s, a) = \sum_{k_1=0}^{\infty} (a + k_1)^{-s} = \zeta(s, a)$. This is the well-known Hurwitz ζ -function.

DEFINITION 3. We define the k-th Bernoulli polynomials of order $n, {}_{n}B_{k}(a)$, whose first derivative ${}_{n}B_{k}^{(1)}(a)$ appears as the cofficient of z^{k} in the expansion

(3)
$$\frac{(-1)^{n} z e^{-az}}{(1-e^{-z})^{n}} = \frac{(-1)^{n} A_{n}(a)}{z^{n-1}} + \frac{(-1)^{n-1} A_{n-1}(a)}{z^{n-2}} + \cdots + \frac{A_{2}(a)}{z} - A_{1}(a) + \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k!} {}_{n} B_{k}^{(1)}(a) z^{k}$$

which is valid in the annulus $\{z \mid 0 < |z| < 2\pi\}$.

Now, ${}_{n}B_{k}(a)$ is called the Multiple Bernoulli polynomial.

236

THEOREM 4.

$$A_s(a) = {}_n B_1^{(s+1)}(a)$$
 and $\frac{{}_n B_{k+1}^{(2)}(a)}{k+1} = {}_n B_k^{(1)}(a)$

for $k = 1, 2, \cdots$.

Proof. We differentiate (3) with regard to a; we obtain

$$\frac{(-1)^n z e^{-az}}{(1-e^{-x})^n} = \frac{(-1)^n A'_{n-1}(a)}{z^{n-1}} + \frac{(-1)^{n-1} A'_{n-2}(a)}{z^{n-2}} + \cdots + \frac{(-1) A'_2(a)}{z^2} + \frac{A'_1(a)}{z} + \sum_{k=1}^{\infty} \frac{(-1)^k B^{(2)}_k(a)}{k!} z^{k-1}$$

Equating now coefficient of like powers of z in (3) and we get $A_{n-q+1}(a) = A'_{n-q}(a)$, $q = 1, 2, \dots, n-1$ and $A_1(a) = {}_{n}B_1^{(2)}(a)$. Hence $A_s(a) = {}_{n}B_1^{(s+1)}(a)$ and ${}_{n}B_1^{(2)}{}_{k+1}(a) = {}_{n}B'_k(a)$. Thus, the fundamental expansion (3) may be written

$$(4) \quad \frac{(-1)^n z e^{-az}}{(1-e^{-z})^n} = \sum_{s=1}^n \frac{(-1)^s {}_n B_1{}^{(s+1)}(a)}{z^{s-1}} + \sum_{k=1}^\infty \frac{(-1)^{k-1} {}_n B_k{}'(a)}{k!} z^k$$

2. An analytic continuation of the multiple Hurwitz ζ -function

THEOREM 5. $\zeta_n(s,a)$ is a meromorphic function with simple poles at $s = 1, 2, \dots, n$.

Proof. From (2), for $\operatorname{Re} s > n$,

$$\zeta_n(s,a) = \sum_{k_1,k_2,\cdots,k_n=0}^{\infty} (a+k_1+k_2+\cdots+k_n)^{-s}$$

We know that

$$\Gamma(s) = \int_0^\infty t^{s-1} e^{-t} dt = (a+k_1+\cdots+k_n)^s \int_0^\infty e^{-(a+k_1+\cdots+k_n)t} t^{s-1} dt$$

Then we have, for $\operatorname{Re} s > n$

$$\begin{aligned} \zeta_n(s,a)\Gamma(s) &= \int_0^\infty \frac{1}{(1-e^{-at})^n} e^{-at} t^{s-1} dt \\ &= \left(\int_0^1 + \int_1^\infty\right) t^{s-1} e^{-at} \frac{1}{(1-e^{-t})^n} dt \end{aligned}$$

Now, when $|s| \leq c$, where c is any positive number, we have

$$\int_{1}^{\infty} |t^{s-1}e^{-at} \frac{1}{(1-e^{-t})^{n}}| dt = \int_{1}^{\infty} t^{c-1}e^{-at} \frac{1}{(1-e^{-t})^{n}} dt$$
$$\leq \frac{1}{1-e^{-1}} \int_{1}^{\infty} t^{c-1}e^{-at} dt$$

There, the second integral in (5) converges uniformly in every compact subset in the whole complex plane C and so represents an analytic function in C. On the ohter hand, the function $\frac{e^{t(n-a)}}{(e^t-1)^n}$ is analytic in a deleted neighborhood of zero and

$$\lim_{t \to 0} t^n \frac{e^{t(n-a)}}{(e^t-1)^n} = \lim_{t \to 0} \frac{t e^{\frac{t(n-a)}{n}}}{e^t-1} = 1 \neq 0,$$

 \mathbf{but}

$$\lim_{t\to 0} t^{n+1} \frac{e^{t(n-a)}}{(e^t-1)^n} = 0.$$

Thus $\frac{e^{t(n-a)}}{(e^t-1)^n}$ has a pole of order *n* at zero. Also, by (4), for $0 < |t| < 2\pi$

$$\frac{t^{s-1}e^{-at}}{(1-e^{-t})^n} =_n B_1^{(n+1)}(a)t^{s-n-1} -_n B_1^{(n)}(a)t^{s-n} + \cdots + (-1)^{n+2} {}_n B_1^{(3)}(a)t^{s-3} + (-1)^{n+1} {}_n B_1^{(2)}(a)t^{s-2} + \sum_{k=1}^{\infty} \frac{(-1)^{n+k-1} {}_n B_k^{\prime}(a)}{k!} t^{k+s-2}.$$

238

Using this expansion and term by term integration (justified by uniform convergence) the first integral in (5) can be written

$$\int_{0}^{1} t^{s-1} \frac{e^{-at}}{(1-e^{-t})^{n}} dt$$

$$= \frac{nB_{1}^{(n+1)}(a)}{s-n} - \frac{nB_{1}^{(n)}(a)}{s-n+1} + \dots + \frac{(-1)^{n+2} nB_{1}^{(3)}(a)}{s-2}$$

$$+ \frac{(-1)^{n+1} nB_{1}^{(2)}(a)}{s-1} + \sum_{k=1}^{\infty} \frac{1}{k+s-1} \frac{(-1)^{n+k-1} nB_{k}^{(1)}(a)}{k!}.$$

Consequently, for $\operatorname{Re} s > n$, we can write

$$\begin{aligned} \zeta_n(s,a) \\ &= \frac{1}{\Gamma(s)} \left[\frac{{}_nB_1^{(n+1)}(a)}{s-n} - \frac{{}_nB_1^{(n)}(a)}{s-n+1} + \dots + \frac{(-1)^{n+1}{}_nB_1^{(2)}(a)}{s-1} \right] \\ (6) &\quad + \frac{1}{\Gamma(s)} \left[\sum_{k=1}^{\infty} \frac{1}{k+s-1} \frac{(-1)^{n+k-1}{}_nB_k^{(1)}(a)}{k!} \right] \\ &\quad + \frac{1}{\Gamma(s)} \int_1^{\infty} \frac{t^{s-1}e^{-at}}{(1-e^{-t})^n} \, dt. \end{aligned}$$

As said before the third term on the right in (5) is entire, and the series $\sum_{k=1}^{\infty} \frac{1}{k+s-1} \frac{(-1)^{n+k-1} B_k^{(1)}(a)}{k!}$ is meromorphic in the complex plane
(1)

with simple poles at -k if ${}_{n}B_{k}^{(1)}(a) \neq 0, k = 0, 1, 2, \cdots$. Since $\frac{1}{\Gamma(s)}$ is entire with zeros at $0, 1, 2, \cdots$, the right hand side of (6) is meromorphic on all of C with simple poles at $s = 1, 2, \cdots, n$.

COROLLARY 5. The residue of $\zeta_n(s,a)$ at s = r $(r = 1, 2, \dots, n)$ is $\frac{1}{(r-1)!}(-1)^{r+n}{}_n B_1^{(r+1)}(a).$

Proof. From (6),

$$\lim_{s \to r} (s-r)\zeta_n(s,a) = \frac{1}{\Gamma(r)} (-1)^{r+n} {}_n B_1^{(r+1)}(a)$$
$$= \frac{1}{(r-1)!} (-1)^{r+n} {}_n B_1^{(r+1)}(a)$$

References

- 1. J. Bak and D.J. Newman, Complex Analysis, Springer- Verlag, New York, 1982.
- 2. E.W. Barnes, On the theory of the multiple gamma function, Philosophical Transactions of the Royal Society(A) XIX (1904), 374-439.
- 3. J. Choi, Determinants of Laplacians and multiple gamma functions, Ph.D. Dissertation, Flodia State Univ., 1991.
- 4. M. Rao and H. Stetkær, Complex Analysis, World Scientific Publishing, 1991.
- 5. E.T. Whittaker and G.N. Watson, A Course of Morden Analysis (4th. Ed.), Cambridge Univ. Press, 1963.

Department of Mathematics Pusan National University Pusan 609–735, Korea