NOTE ON JOINTLY *-PARANORMALITY

YOUNGSIK PARK AND CHEONSEOUNG RYOO

1. Introduction

Throughout this paper, H will always denote a Hibert space. B(H)will denote the algebra of bounded linear operator on H and $B(H^n)$, the set of a commuting *n*-tuple of operators in B(H), where H^n denotes the orthogonal direct sum of H with itself n times. Let $\sigma(T)$, $\sigma_a(T)$ be the joint spectrum, the joint approximate point spectrum of $T = (T_1, T_2, \dots, T_n)$ in B(H). We shall define some classes of operator families of $B(H^n)$. $T = (T_1, T_2, \dots, T_n) \ (\in B(H^n))$ is called jointly *-paranormal if $||T_i^*x||^2 \leq ||T_i^2x||$ for a unit vetor x in H, $i = 1, 2, \dots, n$. Similarly T is called jointly hyponomal if $T_i^*T_i \geq T_iT_i^*$ for $i = 1, 2, \dots, n$. These notions have been considered by A. Athavale ([1]), R.E. Curto, P.S. Muhly and J. Xia ([4]), M. Chō and M. Takaguchi ([3]), M. Chō and A.T. Dash ([2]), and A. Lubin ([6]). From the definition of jointly *-paranormality, we have the following:

Let $T = (T_1, T_2, \dots, T_n)$ be a commuting *n*-tuple of operators in B(H).

(1) For n = 1, definition of jointly *-pranormality is the usual definition of a *-paranormal on H.

(2) If T is jointly *-paranormal, then any subtuple of T is jointly *-paranormal.

(3) If T is jointly *-paranormal and N is a normal operator commuting with each T_i , then $(NT_1, NT_2, \dots, NT_n)$ is jointly *-paranormal.

(4) If T is jointly *-paranormal, then $(I, T_1, T_2^2, \cdots, T_{n-1}^{n-1})$ is jointly *-paranormal.

(5) If a single operator T is a *-paranormal operator, then (T, T, \dots, T) is also jointly *-paranormal.

Received November 3, 1992

2. Generalization and unitarily equivalence

An operator $T \in B(H)$ is said to be isometric if ||Tx|| = ||x|| for all $x \in H$. It is easy to verify that every isometric operator is a hyponormal operator. An operator $T \in B(H)$ is said to be unitarily equivalent to an operator S if $S = U^*TU$ for a unitary operator U. In [5], T. Furuta and R. Nakamoto have proved the following theorem.

THEOREM A. A hyponormal operator unitarily equivalent to its adjoint is a normal operator.

We have a generalized result for a commuting n-tuple of operators as following lemma.

LEMMA 2.1. Let $T = (T_1, T_2, \dots, T_n)$ be a commuting n-tuple of operators such that each T_i is unitarily equivalent to its adjoint. If T is jointly hyponormal, then T is jointly normal.

Proof. Suppose T_i is hyponormal and $T_i = U^*T_i^*U$ for a unitary operator U $(i = 1, 2, \dots, n)$. Since T is jointly hyponormal, it follows that

$$\begin{aligned} \|T_i^*x\| &\leq \|T_ix\| = \|U^*T_i^*U\| = \|T_i^*Ux\| \\ &\leq \|T_iUx\| = \|U^*T_iUx\| = \|T_i^*x\| \end{aligned}$$

for any x in H ($i = 1, 2, \dots, n$). Thus each T, is a normal operator.

We generalize the above theorem and prove similar results for classes of jointly hyponormal and jointly *-paranormal. The following theorem is proved by Lemma 2.1.

THEOREM 2.2. Let $T = (T_1, T_2, \dots, T_n)$ be a commuting *n*-tuple of operators such that each T_i is unitarily equivalent to a hyponormal operator. Then T is jointly hyponormal.

THEOREM 2.3. Let $T = (T_1, T_2, \dots, T_n)$ be a commuting n-tuple of operators such that T_i is unitarily equivelent to a *-paranormal operator. Then T is jointly *-paranormal.

Proof. It is sufficient to show that each T_i is a *-paranormal operator. Suppose that $T_i = U^*SU$ for a *-paranormal operator S and a

unitary operator $U, i = 1, 2, \dots, n$. Now for each $x \in H$, we have

$$\begin{aligned} \|T_{i}^{*}x\|^{2} &= \|U^{*}S^{*}Ux\|^{2} = \|S^{*}Ux\|^{2} \\ &\leq \|S^{2}Ux\| \|Ux\| = \|UT_{i}^{2}x\| \|x\| \\ &\leq \|T_{i}^{2}x\| \|x\|, \end{aligned}$$

 $i = 1, 2, \dots, n$. Therefore each T_i is a *-paranormal operator.

The following corollaries follow from Theorem 2.3.

COROLLARY 2.4. Let $T = (T_1, T_2, \dots, T_n)$ be a commuting *n*-tuple of operators and let $S = (S_1, S_2, \dots, S_n)$ be jointly *-paranormal. If each T_i is unitarily equivalent to S_i for $i = 1, 2, \dots, n$, then T is jointly *-paranormal.

COROLLARY 2.5. Let $T = (T_1, T_2, \dots, T_n)$ be jointly *-paranormal. Then $(U^*T_1U, U^*T_2U, \dots, U^*T_n)$ is jointly *-paranormal, where U is any unitary operator.

The product of two commuting *-paranormal operators, in general, may not be a *-paranormal operator. In [7], S.M. Patel has proved the following theorem.

THEOREM B. Let A be a hyponormal operator and let B be a *-paranormal operator. If A and B are doubly commutative, then AB is a *-paranormal operator.

We charaterize the above theorem and prove a similar result for the class of *-paranormal operators.

THEOREM 2.6. Let $T = (T_1, T_2, \dots, T_n)$ be a commuting *n*-tuple of operators such that each T_i commutes with an isometric operator S. If T is jointly *-paranormal, then $(T_1S, T_2S, \dots, T_nS)$ is jointly *-paranormal.

Proof. Let x be a unit vetor in H. If T is jointly *-paranormal and S is an isometric operator, then we have

$$||(T_{i}S)^{*}x||^{2} = ||S^{*}T_{i}^{*}x||^{2} \le ||ST_{i}^{*}x||^{2} = ||T_{i}^{*}x||^{2}$$
$$\le ||T_{i}^{2}x|| = ||ST_{i}^{2}x|| = ||ST_{i}^{2}xS|| = ||(T_{i}S)^{2}x||.$$

Thus each T_iS is a *-paranormal operator and T_iS commutes with T_jS for $i, j = 1, 2, \dots, n$. Therefore $(T_1S, T_2S, \dots, T_nS)$ is jointly *-paranormal.

There exists an example that the product of two double commuting n-tuples of *-paranormal operators is jointly *-paranormal by the following given conditions.

EXAMPLE 2.7. Let $T = (T_1, T_2, \dots, T_n)$ and $S = (S_1, S_2, \dots, S_n)$ be jointly *-paranormal such that T_i and S_i are doubly commutative for each *i*.

(1) If $||T_i^*S_ix|| ||x|| \ge ||T_i^*x|| ||S_ix||$ for all $x \in H$ and for each i, $i = 1, 2, \dots, n$, then $(T_1S_1, T_2S_2, \dots, T_nS_n)$ is jointly *-paranormal. (2) If $||T_i^*S_i^2x|| ||x|| \ge ||T_i^*x|| ||S_i^2x||$ for all $x \in H$ and for each i, $i = 1, 2, \dots, n$, then $(T_1S_1, T_2S_2, \dots, T_nS_n)$ is jointly *-paranormal.

Proof. (1): Assume that $||T_i^*S_ix|| ||x|| \ge ||T_i^*x|| ||S_ix||$ for all $x \in H$ and for each $i, i = 1, 2, \dots, n$. Since T_i and S_i are doubly commuting *-paranormal operators, we have

$$\begin{split} \|T_{i}^{2}S_{i}^{2}x\| \|S_{i}^{2}x\| \|S_{i}x\|^{2} \|T_{i}^{*}x\| \|x\|^{2} \\ &\geq \|T_{i}^{*}S_{i}^{2}x\| \|S_{i}x\|^{2} \|T_{i}^{*}x\| \|x\|^{2} \\ &\geq \|S_{i}^{*}T_{i}^{*}x\|^{2} \|T_{i}^{*}S_{i}^{2}x\| \|S_{i}x\|^{2} \|x\|^{2} \\ &\geq \|S_{i}^{*}T_{i}^{*}x\|^{2} \|T_{i}^{*}S_{i}x\| \|S_{i}^{2}x\| \|S_{i}x\| \|x\|^{2} \\ &\geq \|S_{i}^{*}T_{i}^{*}x\|^{2} \|T_{i}^{*}x_{i}\| \|S_{i}x\| \|S_{i}x\| \|x\|^{2} \\ &\geq \|S_{i}^{*}T_{i}^{*}x\|^{2} \|T_{i}^{*}x_{i}\| \|S_{i}x\|^{2} \|S_{i}^{2}x\| \|x\|. \end{split}$$

Thus each T_iS_i is a *-paranormal operator and $(T_1S_1, T_2S_2, \cdots, T_nS_n)$ is a commuting *n*-tuple of operators. Therefore $(T_1S_1, T_2S_2, \cdots, T_nS_n)$ is jointly *-paranormal.

(2): By similar method we have

$$\begin{aligned} \|T_{i}^{2}S_{i}^{2}x\| \|S_{i}^{2}x\| \|S_{i}^{*}x\| \|T_{i}^{*}x\| \|x\| &\geq \|T_{i}^{*}S_{i}^{2}x\|^{2} \|S_{i}^{*}x\| \|T_{i}^{*}x\| \|x\| \\ &\geq \|S_{i}^{*}T_{i}^{*}x\|^{2} \|T_{i}^{*}S_{i}^{2}x\| \|S_{i}^{*}x\| \|x\| \\ &\geq \|S_{i}^{*}T_{i}^{*}x\|^{2} \|T_{i}^{*}x\| \|S_{i}^{*}x\| \|S_{i}^{*}x\| \|x\| \end{aligned}$$

Thus each $T_i S_i$ is a *-paranormal and so $(T_1 S_1, T_2 S_2, \dots, T_n S_n)$ is jointly *-paranormal.

In [8], C.R. Putnam has proved the following theorem.

Theorem C. Let T be a hyponormal operator and let z belong to the boundary of $\sigma(T)$. Then $|z| \in \sigma(T^*T)^{\frac{1}{2}} \cap \sigma(TT^*)^{\frac{1}{2}}$.

LEMMA 2.8. Let $T = (T_1, T_2, \dots, T_n)$ be a commuting n-tuple of operators. If T is jointly *-paranormal and $\lambda_i \ (\neq 0) \in \sigma_a(T_i)$ for each $i, i = 1, 2, \dots, n$, then $\overline{\lambda_i} \in \sigma_a(T_i^*)$.

Proof. Let $\lambda_i \ (\neq 0) \in \sigma_a(T_i)$ for each $i, i = 1, 2, \dots, n$. Then there is a sequence $\{x_n\}$ of unit vectors such that $\|(T_i - \lambda_i)x_n\| \to 0$ as $n \to \infty$. Since each T_i is a *-paranormal operator, we have

 $\|(T_{\mathfrak{r}}^*-\overline{\lambda_{\mathfrak{r}}})x_n\|^2 \leq \|T_{\mathfrak{r}}^2x_n\| - \lambda_{\mathfrak{r}}(x_n,T_{\mathfrak{r}}x_n) - \overline{\lambda_{\mathfrak{r}}}(T_{\mathfrak{r}}x_n,x_n) + |\lambda_{\mathfrak{r}}|^2.$

The right term of above inequality goes to zero as n goes to infinity. Thus $\overline{\lambda_i} \in \sigma_a(T_i^*)$.

We generalize the above theorem and have a similar result in the following theorem.

THEOREM 2.9. Let $T = (T_1, T_2, \dots, T_n)$ be a commuting n-tuple of operators and let $z = (z_1, z_2, \dots, z_n) \in \sigma_a(T)$. If T is jointly *paranormal. then $|z_i| \in \sigma(T_i^*T_i)^{\frac{1}{2}} \bigcap \sigma(T_iT_i^*)^{\frac{1}{2}}$, $i = 1, 2, \dots, n$.

Proof. Let $z = (z_1, z_2, \cdots, z_n) \in \sigma_a(T)$. Then there is a sequence $\{x_n\}$ of unit vectors such that

$$\|(T_i - z_i)x_n\| \to 0 \text{ as } n \to \infty.$$

Since T is jointly *-paranormal, by Lemma 2.8 we have

 $\|(T_i^* - \overline{z_i}x_n\| \to 0 \text{ as } n \to \infty.$

Thus it follows that

$$\|(T_i^*T_i - |z_i|^2 I)x_n\| \to 0$$

 and

$$\|(T_{\mathfrak{i}}T_{\mathfrak{i}}^*-|z_{\mathfrak{i}}|^2 I)x_n\|\to 0 \quad \text{as} \quad n\to\infty.$$

So

$$\|((T_{i}^{*}T_{i})^{\frac{1}{2}} - |z_{i}|I)x_{n}\| \to 0,$$

$$\|((T_{i}T_{i}^{*})^{\frac{1}{2}} - |z_{i}|I)x_{n}\| \to 0 \quad \text{as} \quad n \to \infty.$$

Therefore $|z_i| \in \sigma(T_i^*T_i)^{\frac{1}{2}} \cap \sigma(T_iT_i^*)^{\frac{1}{2}}$ for each *i*.

In the following example, we know that if we replace $\sigma_a(T)$ by $\sigma(T)$, then Theorem 2.9 deces not hold.

EXAMPLE 2.10. Let $T = (T_1, T_2, \dots, T_n)$ be an *n*-tuple of operators such that $T_i = iT_1$ for each $i, i = 1, 2, \dots, n$ and T_i is the unilateral shift operator defined by

$$T_1(x_1,x_2,\cdots)=(0,x_1,x_2,\cdots)$$

for a sequence $\{x_n\}$ in l^2 . Then we have

$$T_{i}^{*}T_{i} = i^{2}I, \qquad T_{i}T_{i}^{*} = \text{diag}(0, i^{2}, i^{2}, \cdots)$$

for each $i, i = 1, 2, \dots, n$. Since $||T_i^*x||^2 \leq ||T_i^2x||$ for any unit vector x and for each $i, i = 1, 2, \dots, n$, each T_i is a *-paranormal operator. And so T is jointly *-paranormal. Also we can see that $\sigma(T_i) = \{\lambda \in C : |\lambda| \leq i\}$. By simple calculations we have $\sigma(T_i^*T_i)^{\frac{1}{2}} = \{i\}$ and $\sigma(T_iT_i^*)^{\frac{1}{2}} = \{0, i\}$ for each i. Therefore the condition $z = (z_1, z_2, \dots, z_n) \in \sigma(T)$ does not imply $|z_i| \in \sigma(T_i^*T_i)^{\frac{1}{2}} \cap \sigma(T_iT_i^*)^{\frac{1}{2}}$, $i = 1, 2, \dots, n$.

References

- 1. A. Athavala, On joint hyponormality of operators, Proc. Amer. Math. Soc 103 (1988), 417-423
- 2. M. Chō and A.T. Dash, On the joint spectra of doubly commuting n tuples of semi-normal operators, Glasgow Math. J. 26 (1985), 47-50.
- M. Chō and M. Takaguchi, Some classes of commuting n-tuples of operators, Studia Mathemati LXXX (1984), 245-259.
- 4. R.E. Curto, P.S. Muhly and J. X1a, Hyponormal pairs of commuting operators, to appear Op Th. Adn.and Appl.
- 5. T. Furta and R. Nakamoto, On some theorems of Berberian and Sheth, Proc. Japan Academy 46 (1970), 841-845
- 6. A. Lubin, Weighted shifts and commuting normal extension, J Austral. Math Soc. 27 (1979), 17-26.
- 7. S.M Patel, Contributions to the study of spectraloid operators, Ph D. Thesis, Del-phi University, 1974.
- C.R. Putnam, Spectra of polar factors of hyponormal operators, Trans. Amer. Math. Soc. 188 (1974), 419-428

Department of Mathematics University of Ulsan Ulsan 680-749, Korea

Department of Mathematics Kyungpook National University Taegu 702–701, Korea