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NOTE ON JOINTLY *-PARANORMALITY

Youngsik Park and Cheonseoung Ryoo

1. Introduction
Through이it this paper, H will always denote a Hibert space. B(H) 

will denote the algebra of bounded linear operater on H and 

the set of a commuting n-tuple of operators in B(H\ where Hn de

notes the orthogonal direct sum of H with itself n times. Let a(T), 

c%(꼬) be the joint spectrum, the joint approximate point spectrum 

oi T — (7i, 7切…,7^) in B(H). We shall define some classes of op

erator families of 끄 = (7、7切 … ,Tn) (e B(jffn)) is called

jointly ^-paranormal if 씨卩 < ||7^x|| for a unit vetor x in H>

z = 1,2, ••- , n. Similarly T is called jointly hyponomal if T*Tt > TtT* 

for « = 1,2, ■ • • ,n. These notions have been considered by A. Athavale 

([1]), R.E. Curto, P.S. Muhly and J. Xia ([쉬), M. Cho and M. Tak- 

aguchi ([3]), M. Cho and A.T. Dash ([2]), and A. Lubin ([6]). From 

the definition of jointly *-paranormality, we have the following:

Let T = (71,727 , • • 5?n) be a commuting n-tuple of operators in

(1) For n = 1, definition of jointly *-pranormality is the usual defi

nition of a *-paranormal on H.

(2) If T is jointly ^-paranormal, then any subtuple of T is jointly 

^-paranormal.

(3) If T is jointly *-paranormal and TV is a normal operator commut

ing with each Tt, then (NT、、NT)• • , NTn) is jointly *-paranormal.

(4) If T is jointly ^-paranormal, then (1,71,7^, • - - , T二;)is jointly 

*-paranormal.

(5) If a single operator T is a *-paranormal operator, then (T, T, 

• • *, T) is also jointly ^-paranormal.
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2. Ge neraljz at ion and unitarily equivalence
An operator 끄 € B(H) is said to be isometric if ||Tx|| = ||께 for 

all m £ H. It is easy to verify that every isometric operator is a 

hyponormal operator. An operator 꼬 g is said to be unitarily 

equivalent to an operator S if S u U*TU for a unitary operator U. In 

[5], T. Furuta and R, Nakamoto have proved the following theorem.

THEOREM A. A hyponormal operator unitarily equivalent to its 

adjoint is abnormal operator.

We have a generalized result for a commuting n-tuple of operators 

as following lemma.

Lemma 2.1. Let T = •…^Tn) be a commuting n-tuple of

operators such that each Tt is unitarily equivalent to its adjoint. IfT 

is jointly hyponormal, then T is jointly normal.

Proof. Suppose Tt is hyponormal and Tt = U*T：U for a unitaxy 

operator U (z = 1,2,- - - ,n). Since 꼬 is jointly hyponormal, it follows 

that

Il 戏 께 < ii( 께 = i"z* 끼] = iim/깨
< |]ZW께 = \\U*TtUx\\ = ||T>||

for any a: in if ( z 1,2, • • • , n). Thus each is a normal operator.

We generalize the above theorem and prove similar results for classes 

of jointly hyponormal and jointly *-paranormal. The following theorem 

is proved by Lemma 2.1.

THEOREM 2.2. Let T = (7, 7切•…,Tn) be a commuting n-tuple 

of operators such that each Tt is unitarily equivalent to a hyponormal 

operator. Then T is jointly hyponormal.

THEOREM 2.3. Let T = (7\ 7切・・. , Tn) be a commuting n-tuple 

of operators such that Tt is unitarily equivelent to a ^-paranormal 

operator. Then T is jointly ^-paranormal.

Proof. It is sufficient to show that each 7^ is a ^-paranormal oper

ator. Suppose that Tt = U*SU for a *-paxanornial operator S and a 
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unitary operator [7, z = 1^,2,• •• ,n. Now for each x € /T, we have

||T>||2 = ||U*SW 찌 |2 = ||S*海『

< l"U에 ||U께 = 에 II께

< l£2께 II찌I,

z = 1,2, ••- ,n. Therefore each 7^ is a ^-paranormal operator.

The following corollaries follow from Theorem 2.3.

COROLLARY 2.4. Let T = （7、7切•…yTn） be a comminuting n- 

tuple of operators and let S = （Si, S2, • - - , Sn） be jointly ^-paranormal. 

If each Ti is unitarily equivalent to St for t — 1,2, • - • , nythen T is jointly 

^-paranormal.

COROLLARY 2.5. Let 꼬 = 切… • ,7^） be jointly ^-paranormal. 

Then （U*T\U卩叮顷丁广. -, U*Tn） is jointly ^-paranormal, where U is 

any unitary operator.

The product of two commuting *-paranormal operators, in general, 

may not be a *-paranormal operator. In [7], S.M. Patel has proved the 

following theorem.

THEOREM B. Let A be a hyponormal operator and let B be a *- 

paranormal operator. If A and B are doubly commutative^ then AB 

is a *-paranorma/ operator.

We charaterize the above theo호em and prove a similar result for the 

class of ^-paranormal operators.

THEOREM 2.6. Let T = ,Tn） be a comniuting n-tuple

of operators such that each Tt commutes with an isometric operator

S. If T is jointly *-paranormal, then QkSfLbS,-・-,is jointly 

*-paranormal.

Proof. Let x be a unit vetor in H. If T is jointly ^-paranormal and 

S is an isometric operator, then we have

IISS）*께2 = ||S*T>||2 < ||ST*||2 = II球찌|2

< 11玲끼 I = IIST2 에 = 11冗%에 = ||（玷）2이
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Thus each TtS is a *-paranormal operator and T\S commutes with 
心S for i" = 1,2,…,n. Therefore (RSH&S,…^TnS) is jointly *- 

paranormal.

There exists an example that the product of two double commut

ing n-tuples of *-paranormal operators is jointly *-paranormal by the 

following given conditions.

Example 2.7. Let T = (T-7切…,Tn) and S = (SM% …)Sn) 

be jointly *-paranormal such that Tt and St are doubly commutative 

for each i.

(1) If ||7；&지| H꽤 Z IIU끼111$同I for all x 6 H and for each i, 

z = 1,2, ••- ,n, then (幻&二匚沾切• • - ,TnSn) is jointly *-paxanormal.

(2) If |£啓께 II끼I > ||T>|| ||S：외I for all x G and for each i, 

f = 1,2, ••- ,n, then (幻$1,7；$2, • • • ,TnSn) is jointly *-paranormal.

Proof. (1) : Assume that |仔；*£께 II께 N 忸*이I for all x € 

and for each z, i = 1,2,••- ,n. Since Tt and St are doubly commuting 

^-paranormal operators, we have

IWS如II 灣끼||£끼|2||以|| ||씨|2
싀好께 ||&께2|区：께 II끼|2

싀岡#끼却球弩매 ||&께勺|에2
싀|年理에2帜；3께 |区께 ||£쩨 |]께2

' 峯尖球께*球께 ||&에2||舟께I同.

Thus each TtSt is a ^-paranormal operator and (7展\ 工小命• - • ^TnSn) 

is a commuting n-tuple of operators. Therefore (TiSi 二成命 … ^TnSn) 

is jointly *-paranormal.

(2) : By similar method we have

骨s：께 IIS如II IIS：이I ||7E II에 > IE*沧||2||S：께 ||以圳 II꽤

기 is：/： 께 2 忆或에 II心;II 间|

싀 |sxw|2|efi|s 如II |时씨].

Thus each 匚S* is a *-paranormal and so {RSJ&S) … ,TnSn) is 

jointly *-paranormal.

In [8], C.R. Putnam has proved the following theorem.
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Theorem C. Let T be a hyponormal operator and let z belong to 

the boundary of 이笋). Then |끼 € a(T*T)i a(TT*)t

LEMMA 2.8. Let T = (7\7如•…,Tn) be a commuting n-tuple of 

operators. KT is jointly ^-paranormal and Xt Q) E cra(Tt) for each 

i, i — 1,2, , n, then 為 € aa(7^*).

Proof. Let Af (尹 0) 6 aa(7i) for each z, i = 1,2, • • • , n. Then there 

is a sequence {xn} of unit vectors such that ||(I^ — At)xn|| —> 0 as 

n —> oo. Since each Ti is a *-paranormal operator, we have

110；* - 插)끼|2 < ||T*z시I - - 如0d，以)+ I A, I2 .
The right term of above inequality goes to zero as n goes to infinty. 

Thus A, e aa(77).

We generalize the above theorem and have a similar result in the 

following theorem.

THEOREM 2.9. Let T = (7、7, •…，八)be a commuting n-tuple 

of operators and let z = (zi, 2吃，• • . , zn) G aa(T). If T is jointly *- 

paranormal, then | zt |G 이：= 1,2, • • • ,n.

Proof. Let z = (zt,z2y - - - , zn) E。％(幻. Then there is a sequence 

{xn} of unit vectors such that

||(7^ — —» 0 as n —> oo.

Since T is jointly ^-paranormal, by Lemma 2.8 we have

||(厂—石—> 0 as n t oo.

Thus it follows that

n(m—m I2 dwto

and

||(TtT,*- I 切 I2 I)xn|| t 0 as 18.

So

||((7口)*—|為|邛시|-+0,

||((TtT,*)5- J 切 I l)xn|| t 0 as n oo.

Therefore | zt |G a(T*Tt)^ Q cr(TiT*)^ for each i.

In the following example, we know that if we replace aa(T) by a(T), 

then Theorem 2.9 deoes not hold.
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EXAMPLE 2.10. Let T = (7\ I如• • • , Tn) be an n-tuple of operators 

such that Ti = iT\ for each z, z = 1,2, • * • ,n and T\ is the unilateral 

shift operator defined by

7i(2：i,X2,---) = (0,

for a sequence {xn} in 7즈. Then we have

T：Tt = i2I, TiT： = diag(0,卩 3, . . •)

for each £, i = 1,2, •• - ,n. Since |£七매? < |仔?께 for any unit 

vector x and for each i = 1,2,,n, each 7^ is a *-paranormal 

operator. And so T is jointly *-paranormal. Also we can see that 

a(Tt) = {A € C : I A |< i). By simple calculations we have o”(罗R)* = 

(«} and a(TiT^)2 = {0盘} for each i. Therefore the condition z =

…,Zn) e ct(T) does not imply | 石 |e

i = 1,2,- • • ,n.
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