A CONSTRUCTION OF PIECEWISE SOLENOIDAL VECTOR FIELDS

HYUN YOUNG LEE

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^N with N = 2 or N = 3, and whose boundary $\partial\Omega$ is smooth. We consider the boundary value problem of the stationary Stokes equations: Seek a vector valued function $\vec{u} =$ (u_1, u_2, \ldots, u_N) (the velocity) and a scalar function p (the pressure) satisfying

(1)
$$\begin{cases} -\nu\Delta \vec{u} + \text{grad } p = \vec{f} & \text{in } \Omega, \\ \text{div } \vec{u} = 0 & \text{in } \Omega, \\ \vec{u} = 0 & \text{on } \partial\Omega; \end{cases}$$

where $\nu > 0$ is the kinematic viscosity and $\vec{f} = (f_1, f_2, \ldots, f_N)$ is a given vector valued function.

For results concerning existence, uniqueness and regularity of (weak) solutions of (1), we refer to [6].

In constructing Galerkin discretization for the Stokes problem, one encounters a major difficulty in incorporating the incompressibility condition into the finite element space (cf.[5]). Various techniques have been developed to avoid this difficulty. One such method consists in using a Lagrange multiplier technique (cf.[3,4]). In [1], they introduced the finite dimensional approximating spaces V_k^N consisting of piecewise polynomial functions of degree $\leq k, k \geq 1$ for the velocity \vec{u} that are piecewise solenoidal i.e. the constituent functions satisfy the incompressibility condition (strongly) on each triangle in the subdivision of the domain Ω . And they proved that these functions possess optimal approximating properties on the domains with curved boundaries.

Received October 20, 1992

In this paper, we compute the dimension of V_k^N and construct the basis of V_k^N to provide an opportunity to use computer codes for real computations. In this paper, we will denote the set of polynomials of degree $\leq k$ by P_k i.e.

$$P_{k} = \left\{ \sum \gamma_{\alpha_{1}\alpha_{2}...\alpha_{N}} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \dots x_{N}^{\alpha_{N}} \mid \sum_{l=1}^{N} \alpha_{l} \leq k, \ \gamma_{\alpha_{1}\alpha_{2}...\alpha_{N}} \in R \right\}$$

We know that (see [2])

dim
$$P_k = \binom{N+k}{k}$$
.

2. The dimension of V_k^N

THEOREM 1. $V_k^N = \{ p \in (P_k)^N | \text{ div } p = 0 \}$. Then

dim
$$V_k^N = N\binom{N+k}{k} - \binom{N+k-1}{k-1}$$
.

Proof. Let $A_k = \left\{ x_1^{r_1} x_2^{r_2} \dots x_N^{r_N} \mid 0 \le r_i \le k, \sum_{i=1}^N r_i = k \right\}$. Then P_k is the collection of all the possible finite linear combination of elements in $A_0 \cup \dots \cup A_k$, so we can say $P_k = \text{Span}\{A_0 \cup A_1 \cup \dots \cup A_k\}$. Obviously,

$$A_{k+1} = \bigcup_{i=1}^{N} \left\{ x_i a_k | a_k \in A_k \right\}.$$

First we'll show that for each $1 \leq i \leq N$,

$$\operatorname{Span}(A_k) = \left\{ \frac{\partial}{\partial x_i} a_{k+1} | a_{k+1} \in \operatorname{Span}(A_{k+1}) \right\}.$$

Choose $x_1^{r_1} x_2^{r_2} \dots x_N^{r_N} \in A_k$. If $r_i = 0$, then $x_i (x_1^{r_1} x_2^{r_2} \dots x_N^{r_N}) \in A_{k+1}$ and

$$\frac{\partial}{\partial x_i}\left[x_i(x_1^{r_1}x_2^{r_2}\ldots x_N^{r_N})\right] = x_1^{r_1}x_2^{r_2}\ldots x_N^{r_N}.$$

If
$$r_i \neq 0$$
, then $(x_1^{r_1} x_2^{r_2} \dots x_i^{r_i+1} \dots x_N^{r_N})/(r_i+1) \in \text{Span}(A_{k+1})$, and
 $\frac{\partial}{\partial x_i} [(x_1^{r_1} x_2^{r_2} \dots x_i^{r_i+1} \dots x_N^{r_N})/(r_i+1)] = x_1^{r_1} x_2^{r_2} \dots x_i^{r_i} \dots x_N^{r_N}$.
Therefore $A_k \subset \left\{ \frac{\partial}{\partial x_i} a_{k+1} | a_{k+1} \in \text{Span}(A_{k+1}) \right\}$, which implies
 $\sum_{i=1}^{n} (A_i) \subseteq \left\{ \frac{\partial}{\partial x_i} a_{k+1} | a_{k+1} \in \text{Span}(A_{k+1}) \right\}$

 $\operatorname{Span}(A_k) \subset \left\{ \frac{\partial}{\partial x_i} a_{k+1} | a_{k+1} \in \operatorname{Span}(A_{k+1}) \right\}.$

To prove the reverse inclusion, choose $x_1^{r_1}x_2^{r_2}\ldots x_N^{r_N} \in A_{k+1}$, then there exist i_0 and $a_k \in A_k$ such that

$$x_{i_0}a_k = x_{i_0}(x_1^{s_1}x_2^{s_2}\dots x_N^{s_N}), \text{ where } 0 \le s_i \le k \text{ and } \sum_{i=1}^N = k.$$

If $i = i_0$,

$$\frac{\partial}{\partial x_i}(x_{i_0}a_k) = a_k + (\frac{\partial}{\partial x_i}a_k)x_{i_0}$$
$$= a_k + s_i a_k$$
$$= (1 + s_i)a_k$$

which is in $\text{Span}(A_k)$. If $i \neq i_0$,

$$\begin{aligned} \frac{\partial}{\partial x_i}(x_{i_0}a_k) &= x_{i_0}\frac{\partial}{\partial x}(a_k) \\ &= s_i x_{i_0} x_1^{s_1} \dots x_i^{s_i-1} \dots x_N^{s_N} \end{aligned}$$

which is in $\text{Span}(A_k)$. Therefore we showed,

$$\left\{\frac{\partial}{\partial x_{i}}a_{k+1}|a_{k+1}\in \operatorname{Span}(A_{k+1})\right\}\subset \operatorname{Span}(A_{k}).$$

Next, we will proved that div is a linear mapping from $(P_k)^N$ onto P_{k-1} , which implies the result

$$\dim V_k^N = \dim(\ker(\operatorname{div}))$$

= dim $(P_K)^N - \dim P_{k-1}$
= $N\binom{N+k}{k} - \binom{N+k-1}{k-1}$.

First we take div to the polynomial in $(P_k)^N$.

$$\{ \operatorname{div}(p_1, p_2, \dots, p_N) \mid p_i \in P_k \text{ for all } 1 \leq i \leq N \}$$
$$= \left\{ \sum_{i=1}^N \frac{\partial p_i}{\partial x_i} \mid p_i \in P_k, 1 \leq i \leq N \right\}$$
$$= \left\{ \sum_{i=1}^N \frac{\partial p_i}{\partial x_i} \mid p_i \in \operatorname{Span}(A_0 \cup A_1 \cup \dots \cup A_k), \ 1 \leq i \leq N \right\}.$$

Now choose $p_i \in A_{k_i}$ for some $1 \le k_i \le k$. Then

$$\frac{\partial p_i}{\partial x_i} \in \operatorname{Span}(A_0 \cup A_1 \cup \cdots \cup A_{k^*-1}) \\ \subset P_{k-1}$$

for $1 \leq i \leq N$, where $k^* = \max\{k_1, k_2, \ldots, k_N\} \leq k$. Let's show the reverse inclusion,

$$P_{k-1} = \operatorname{Span}(A_0 \cup A_1 \cup \dots \cup A_{k-1})$$

= $\operatorname{Span}A_0 \oplus \operatorname{Span}A_1 \oplus \dots \oplus \operatorname{Span}A_{k-1}$
= $\left\{ \frac{\partial a_1}{\partial x_1} | a_1 \in \operatorname{Span}(A_1) \right\}$
 $\oplus \left\{ \frac{\partial a_2}{\partial x_1} | a_2 \in \operatorname{Span}(A_2) \right\}$
:
 $\oplus \left\{ \frac{\partial a_k}{\partial x_1} | a_k \in \operatorname{Span}(A_k) \right\}$
= $\left\{ \frac{\partial p}{\partial x_1} | p \in P_k \right\}$
= $\left\{ \frac{\partial p}{\partial x_1} | p \in P_k \right\}$
= $\left\{ \sum_{i=1}^N \frac{\partial}{\partial x_i} p_i | p_1 \in P_k \text{ and } p_i = 0, \text{ if } i \neq 1 \right\}$
 $\subset \left\{ \operatorname{div}(p_1, p_2, \dots, p_N) \mid p_i \in P_k \right\}.$

Therefore we proved div is a linear mapping from $(P_k)^N$ onto P_{k-1} .

202

3. The construction of a basis of V_k^N

Case I : N = 2.

(i) k = 1

Theorem 1 gives dim $V_1^2 = 5$. The basis is the following:

$$\begin{pmatrix} 1\\0 \end{pmatrix} \quad \begin{pmatrix} 0\\1 \end{pmatrix} \quad \begin{pmatrix} 0\\x \end{pmatrix} \quad \begin{pmatrix} y\\0 \end{pmatrix} \quad \begin{pmatrix} x\\-y \end{pmatrix}.$$

(ii) $\mathbf{k} = 2$

The basis is the following: The curve polynomials for k = 1

The vector polynomials for k = 1, and

$$\begin{pmatrix} x^2 \\ -2xy \end{pmatrix} \begin{pmatrix} -2xy \\ y^2 \end{pmatrix} \begin{pmatrix} y^2 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ x^2 \end{pmatrix}.$$

(iii) $\mathbf{k} = \mathbf{n}$

The basis is the set of vector polynomials for k = n - 1, and

$$\begin{pmatrix} 0\\ x^n \end{pmatrix} \begin{pmatrix} 0\\ y^n \end{pmatrix} \begin{pmatrix} x^n\\ -nx^{n-1}y \end{pmatrix} \begin{pmatrix} 2x^{n-1}y\\ -(n-1)x^{n-2}y^2 \end{pmatrix} \\ \begin{pmatrix} 3x^{n-2}y^2\\ -(n-2)x^{n-3}y^3 \end{pmatrix} \cdots \begin{pmatrix} -nxy^{n-1}\\ y^n \end{pmatrix}.$$

$$H : N = 3$$

Case II : N = 3.

(i) k = 1

Theorem 1 gives dim $V_1^3 = 11$. The basis is the following:

The basis is the following:

$$\begin{pmatrix} 1\\0\\0 \end{pmatrix} \begin{pmatrix} 0\\1\\0 \end{pmatrix} \begin{pmatrix} 0\\0\\1 \end{pmatrix} \begin{pmatrix} 0\\0\\1 \end{pmatrix} \begin{pmatrix} 0\\0\\x \end{pmatrix} \begin{pmatrix} 0\\0\\x \end{pmatrix} \begin{pmatrix} y\\0\\0\\0 \end{pmatrix} \\ \begin{pmatrix} 0\\0\\y \end{pmatrix} \begin{pmatrix} z\\0\\0 \end{pmatrix} \begin{pmatrix} 0\\z\\0 \end{pmatrix} \begin{pmatrix} x\\0\\-z \end{pmatrix} \begin{pmatrix} 0\\y\\-z \end{pmatrix}.$$

(ii) k = 2

The basis is the set of the vector polynomials for k = 1 and

$$\begin{pmatrix} 0\\x^2\\0 \end{pmatrix} \quad \begin{pmatrix} 0\\0\\x^2 \end{pmatrix} \quad \begin{pmatrix} y^2\\0\\0 \end{pmatrix} \quad \begin{pmatrix} 0\\0\\y^2 \end{pmatrix} \quad \begin{pmatrix} z^2\\0\\0 \end{pmatrix} \quad \begin{pmatrix} 0\\z^2\\0 \end{pmatrix}$$

Hyun Young Lee

$$\begin{pmatrix} x^{2} \\ 0 \\ -2xz \end{pmatrix} \begin{pmatrix} -2xz \\ 0 \\ z^{2} \end{pmatrix} \begin{pmatrix} 0 \\ y^{2} \\ -2yz \end{pmatrix} \begin{pmatrix} 0 \\ -2yz \\ z^{2} \end{pmatrix} \begin{pmatrix} xy \\ 0 \\ -yz \end{pmatrix}$$
$$\begin{pmatrix} 0 \\ xy \\ -xz \end{pmatrix} \begin{pmatrix} yz \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ xz \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ xy \end{pmatrix}.$$

References

- 1. G. Baker, W. Jureidini and O. Karakashian, Precewse solenoidal vector fields and the Stokes problem (to appear).
- 2. P. Ciarlet, The finite element methods for elliptic problems, North-Holland, New York, 1987.
- 3. M. Crouzeix and P. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations, RAIRO, Serie Anal. Num. 3 (1977), 33-76.
- 4. R. Falk, An analysis of the finite element method using Lagrange multipliers for the stationary Stokes equation, Math. Comp. 30 (1976), 241-249
- 5. M. Fortin, Calcul numérique des écoulements des Bingham et des fluides newtonien incompressibles par la méthode des élements finis, Thése, Université de Paris..
- 6. R. Témam, Navier-Stokes equation, Theory and Numerical Analysis, North--Holland, New York, 1985

Department of Mathematics Kyungsung University Pusan 609–736, Korea

204