A CONSTRUCTION OF PIECEWISE SOLENOIDAL VECTOR FIELDS

Hyun Young Lee

1. Introduction

Let Ω be a bounded domain in R^{N} with $N=2$ or $N=3$, and whose boundary $\partial \Omega$ is smooth. We consider the boundary value problem of the stationary Stokes equations: Seek a vector valued function $\vec{u}=$ $\left(u_{1}, u_{2}, \ldots, u_{N}\right)$ (the velocity) and a scalar function p (the pressure) satisfying

$$
\left\{\begin{align*}
-\nu \Delta \vec{u}+\operatorname{grad} p=\vec{f} & \text { in } \Omega \tag{1}\\
\operatorname{div} \vec{u}=0 & \text { in } \Omega \\
\vec{u}=0 & \text { on } \partial \Omega
\end{align*}\right.
$$

where $\nu>0$ is the kinematic viscosity and $\vec{f}=\left(f_{1}, f_{2}, \ldots, f_{N}\right)$ is a given vector valued function.

For results concerning existence,uniqueness and regularity of (weak) solutions of (1), we refer to [6].

In constructing Galerkin discretization for the Stokes problem, one encounters a major difficulty in incorporating the incompressibility condition into the finite element space (cf.[5]). Various techniques have been developed to avoid this difficulty. One such method consists in using a Lagrange multiplier technique (cf. $[3,4]$). In [1], they introduced the finite dimensional approximating spaces V_{k}^{N} consisting of piecewise polynomial functions of degree $\leq k, k \geq 1$ for the velocity \vec{u} that are piecewise solenoidal i.e. the constituent functions satisfy the incompressibility condition (strongly) on each triangle in the subdivision of the domain Ω. And they proved that these functions possess optimal approximating properties on the domains with curved boundaries.

In this paper, we compute the dimension of V_{k}^{N} and construct the basis of V_{k}^{N} to provide an opportunity to use computer codes for real computations. In this paper, we will denote the set of polynomials of degree $\leq k$ by P_{k} i.e.

$$
P_{k}=\left\{\sum \gamma_{\alpha_{1} \alpha_{2} \ldots \alpha_{N}} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{N}^{\alpha_{N}} \mid \sum_{l=1}^{N} \alpha_{l} \leq k, \gamma_{\alpha_{1} \alpha_{2} \ldots \alpha_{N}} \in R\right\}
$$

We know that (see [2])

$$
\operatorname{dim} P_{k}=\binom{N+k}{k} .
$$

2. The dimension of V_{k}^{N}

Theorem 1. $V_{k}^{N}=\left\{p \in\left(P_{k}\right)^{N} \mid \operatorname{div} p=0\right\}$. Then

$$
\operatorname{dim} V_{k}^{N}=N\binom{N+k}{k}-\binom{N+k-1}{k-1} .
$$

Proof. Let $A_{k}=\left\{x_{1}^{r_{1}} x_{2}^{r_{2}} \ldots x_{N}^{r_{N}} \mid 0 \leq r_{i} \leq k, \sum_{i=1}^{N} r_{i}=k\right\}$.
Then P_{k} is the collection of all the possible finite linear combination of elements in $A_{0} \cup \cdots \cup A_{k}$, so we can say $P_{k}=\operatorname{Span}\left\{A_{0} \cup A_{1} \cup \cdots \cup A_{k}\right\}$. Obviously,

$$
A_{k+1}=\bigcup_{t=1}^{N}\left\{x_{\imath} a_{k} \mid a_{k} \in A_{k}\right\} .
$$

First we'll show that for each $1 \leq \imath \leq N$,

$$
\operatorname{Span}\left(A_{k}\right)=\left\{\left.\frac{\partial}{\partial x_{2}} a_{k+1} \right\rvert\, a_{k+1} \in \operatorname{Span}\left(A_{k+1}\right)\right\}
$$

Choose $x_{1}^{r_{1}} x_{2}^{r_{2}} \ldots x_{N}^{r_{N}} \in A_{k}$. If $r_{i}=0$, then $x_{2}\left(x_{1}^{r_{1}} x_{2}^{r_{2}} \ldots x_{N}^{r_{N}}\right) \in A_{k+1}$ and

$$
\frac{\partial}{\partial x_{i}}\left[x_{2}\left(x_{1}^{r_{1}} x_{2}^{r_{2}} \ldots x_{N}^{r_{N}}\right)\right]=x_{1}^{r_{1}} x_{2}^{r_{2}} \ldots x_{N}^{r_{N}} .
$$

If $r_{1} \neq 0$, then $\left(x_{1}^{r_{1}} x_{2}^{r_{2}} \ldots x_{i}^{r_{1}+1} \ldots x_{N}^{r_{N}}\right) /\left(r_{i}+1\right) \in \operatorname{Span}\left(A_{k+1}\right)$, and

$$
\frac{\partial}{\partial x_{i}}\left[\left(x_{1}^{r_{1}} x_{2}^{r_{2}} \ldots x_{i}^{r_{1}+1} \ldots x_{N}^{r_{N}}\right) /\left(r_{2}+1\right)\right]=x_{1}^{r_{1}} x_{2}^{r_{2}} \ldots x_{i}^{r_{1}} \ldots x_{N}^{r_{N}} .
$$

Therefore $A_{k} \subset\left\{\left.\frac{\partial}{\partial x_{i}} a_{k+1} \right\rvert\, a_{k+1} \in \operatorname{Span}\left(A_{k+1}\right)\right\}$, which implies

$$
\operatorname{Span}\left(A_{k}\right) \subset\left\{\left.\frac{\partial}{\partial x_{i}} a_{k+1} \right\rvert\, a_{k+1} \in \operatorname{Span}\left(A_{k+1}\right)\right\} .
$$

To prove the reverse inclusion, choose $x_{1}^{r_{1}} x_{2}^{r_{2}} \ldots x_{N}^{r_{N}} \in A_{k+1}$, then there exist \imath_{0} and $a_{k} \in A_{k}$ such that

$$
x_{i_{0}} a_{k}=x_{2_{0}}\left(x_{1}^{s_{1}} x_{2}^{s_{2}} \ldots x_{N}^{s_{N}}\right), \text { where } 0 \leq s_{1} \leq k \text { and } \sum_{i=1}^{N}=k .
$$

If $i=i_{0}$,

$$
\begin{aligned}
\frac{\partial}{\partial x_{\mathbf{i}}}\left(x_{\mathbf{i}_{0}} a_{k}\right) & =a_{k}+\left(\frac{\partial}{\partial x_{\mathbf{2}}} a_{k}\right) x_{i_{0}} \\
& =a_{k}+s_{\mathbf{z}} a_{k} \\
& =\left(1+s_{\mathbf{i}}\right) a_{k}
\end{aligned}
$$

which is in $\operatorname{Span}\left(A_{k}\right)$.
If $\mathbf{i} \neq i_{0}$,

$$
\begin{aligned}
\frac{\partial}{\partial x_{\imath}}\left(x_{2_{0}} a_{k}\right) & =x_{i_{0}} \frac{\partial}{\partial x}\left(a_{k}\right) \\
& =s_{z} x_{i_{0}} x_{1}^{s_{1}} \ldots x_{t}^{s_{t}-1} \ldots x_{N}^{s_{N}}
\end{aligned}
$$

which is in $\operatorname{Span}\left(A_{k}\right)$. Therefore we showed,

$$
\left\{\left.\frac{\partial}{\partial x_{\imath}} a_{k+1} \right\rvert\, a_{k+1} \in \operatorname{Span}\left(A_{k+1}\right)\right\} \subset \operatorname{Span}\left(A_{k}\right) .
$$

Next, we will proved that div is a linear mapping from $\left(P_{k}\right)^{N}$ onto P_{k-1}, which implies the result

$$
\begin{aligned}
\operatorname{dim} V_{k}^{N} & =\operatorname{dim}(\operatorname{ker}(\operatorname{div})) \\
& =\operatorname{dim}\left(P_{K}\right)^{N}-\operatorname{dim} P_{k-1} \\
& =N\binom{N+k}{k}-\binom{N+k-1}{k-1} .
\end{aligned}
$$

First we take div to the polynomial in $\left(P_{k}\right)^{N}$.

$$
\begin{aligned}
& \left\{\operatorname{div}\left(p_{1}, p_{2}, \ldots, p_{N}\right) \mid p_{i} \in P_{k} \text { for all } 1 \leq i \leq N\right\} \\
= & \left\{\left.\sum_{i=1}^{N} \frac{\partial p_{i}}{\partial x_{s}} \right\rvert\, p_{t} \in P_{k}, 1 \leq i \leq N\right\} \\
= & \left\{\left.\sum_{i=1}^{N} \frac{\partial p_{i}}{\partial x_{i}} \right\rvert\, p_{i} \in \operatorname{Span}\left(A_{0} \cup A_{1} \cup \cdots \cup A_{k}\right), 1 \leq i \leq N\right\} .
\end{aligned}
$$

Now choose $p_{i} \in A_{k_{1}}$ for some $1 \leq k_{1} \leq k$. Then

$$
\begin{aligned}
\frac{\partial p_{i}}{\partial x_{i}} & \in \operatorname{Span}\left(A_{0} \cup A_{1} \cup \cdots \cup A_{k^{*-1}}\right) \\
& \subset P_{k-1}
\end{aligned}
$$

for $1 \leq i \leq N$, where $k^{*}=\max \left\{k_{1}, k_{2}, \ldots, k_{N}\right\} \leq \mathrm{k}$. Let's show the reverse inclusion,

$$
\begin{aligned}
P_{k-1} & =\operatorname{Span}\left(A_{0} \cup A_{1} \cup \cdots \cup A_{k-1}\right) \\
& =\operatorname{Span} A_{0} \oplus \operatorname{Span} A_{1} \oplus \cdots \oplus \operatorname{Span} A_{k-1} \\
& =\left\{\left.\frac{\partial a_{1}}{\partial x_{1}} \right\rvert\, a_{1} \in \operatorname{Span}\left(A_{1}\right)\right\} \\
& \oplus\left\{\left.\frac{\partial a_{2}}{\partial x_{1}} \right\rvert\, a_{2} \in \operatorname{Span}\left(A_{2}\right)\right\} \\
& \vdots \\
& \oplus\left\{\left.\frac{\partial a_{k}}{\partial x_{1}} \right\rvert\, a_{k} \in \operatorname{Span}\left(A_{k}\right)\right\} \\
& =\left\{\left.\frac{\partial p}{\partial x_{1}} \right\rvert\, p \in P_{k}\right\} \\
& =\left\{\left.\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}} p_{i} \right\rvert\, p_{1} \in P_{k} \text { and } p_{2}=0, \text { if } i \neq 1\right\} \\
& \subset\left\{\operatorname{div}\left(p_{1}, p_{2}, \ldots, p_{N}\right) \mid p_{i} \in P_{k}\right\} .
\end{aligned}
$$

Therefore we proved div is a linear mapping from $\left(P_{k}\right)^{N}$ onto P_{k-1}.

3. The construction of a basis of V_{k}^{N}

Case I: $\mathrm{N}=2$.
(i) $k=1$

Theorem 1 gives $\operatorname{dim} V_{1}^{2}=5$. The basis is the following:

$$
\binom{1}{0} \quad\binom{0}{1} \quad\binom{0}{x} \quad\binom{y}{0} \quad\binom{x}{-y} .
$$

(ii) $\mathrm{k}=2$

The basis is the following:
The vector polynomials for $\mathrm{k}=1$, and

$$
\binom{x^{2}}{-2 x y} \quad\binom{-2 x y}{y^{2}} \quad\binom{y^{2}}{0} \quad\binom{0}{x^{2}} .
$$

(iii) $\mathrm{k}=\mathrm{n}$

The basis is the set of vector polynomials for $\mathrm{k}=\mathrm{n}-1$, and

$$
\begin{gathered}
\binom{0}{x^{n}}\binom{0}{y^{n}}\binom{x^{n}}{-n x^{n-1} y}
\end{gathered} \begin{gathered}
\binom{2 x^{n-1} y}{-(n-1) x^{n-2} y^{2}} \\
\binom{3 x^{n-2} y^{2}}{-(n-2) x^{n-3} y^{3}} \cdots\binom{-n x y^{n-1}}{y^{n}} .
\end{gathered}
$$

Case II : N $=3$.
(i) $k=1$

Theorem 1 gives $\operatorname{dim} V_{1}^{3}=11$.
The basis is the following:

$$
\begin{gathered}
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\left(\begin{array}{l}
0 \\
x \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
x
\end{array}\right)\left(\begin{array}{l}
y \\
0 \\
0
\end{array}\right) \\
\left(\begin{array}{l}
0 \\
0 \\
y
\end{array}\right) \quad\left(\begin{array}{l}
z \\
0 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
z \\
0
\end{array}\right) \quad\left(\begin{array}{c}
x \\
0 \\
-z
\end{array}\right)\left(\begin{array}{c}
0 \\
y \\
-z
\end{array}\right) .
\end{gathered}
$$

(ii) $\mathrm{k}=2$

The basis is the set of the vector polynomials for $k=1$ and

$$
\left(\begin{array}{c}
0 \\
x^{2} \\
0
\end{array}\right) \quad\left(\begin{array}{c}
0 \\
0 \\
x^{2}
\end{array}\right) \quad\left(\begin{array}{c}
y^{2} \\
0 \\
0
\end{array}\right) \quad\left(\begin{array}{c}
0 \\
0 \\
y^{2}
\end{array}\right) \quad\left(\begin{array}{c}
z^{2} \\
0 \\
0
\end{array}\right) \quad\left(\begin{array}{c}
0 \\
z^{2} \\
0
\end{array}\right)
$$

$$
\begin{gathered}
\left(\begin{array}{c}
x^{2} \\
0 \\
-2 x z
\end{array}\right)\left(\begin{array}{c}
-2 x z \\
0 \\
z^{2}
\end{array}\right)\left(\begin{array}{c}
0 \\
y^{2} \\
-2 y z
\end{array}\right)\left(\begin{array}{c}
0 \\
-2 y z \\
z^{2}
\end{array}\right)\left(\begin{array}{c}
x y \\
0 \\
-y z
\end{array}\right) \\
\left(\begin{array}{c}
0 \\
x y \\
-x z
\end{array}\right)\left(\begin{array}{c}
y z \\
0 \\
0
\end{array}\right)\left(\begin{array}{c}
0 \\
x z \\
0
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
x y
\end{array}\right) .
\end{gathered}
$$

References

1. G. Baker, W. Jureidini and O. Karakashian, Precewrse solenoidal vector fields and the Stokes problem (to appear).
2. P. Ciarlet, The finste element methods for elliptac problems, North-Holland, New York, 1987.
3. M. Crouzeix and P. Raviart, Conforming and nonconforming finte element methods for solving the stattonary Stokes equations, RAIRO, Serie Anal. Num. 3 (1977), 33-76.
4. R. Falk, An analysts of the finzte element method using Lagrange multispliers for the stationary Stokes equation, Math. Comp. 30 (1976), 241-249
5. M. Fortin, Calcul numérıque des écoulements des Bingham et des flundes newtonien incompressıbles par la méthode des élements finzs, Thése, Université de Parts..
6. R. Témam, Navier-Stokes equation, Theory and Numerical Analysts, North-Holland, New York, 1985

Department of Mathematics
Kyungsung University
Pusan 609-736, Korea

