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A CONSTRUCTION OF PIECEWISE
SOLENOIDAL VECTOR FIELDS

Hyun Young Lee

1. Introduction
Let Q be a bounded domain in RN with N = 2 ot N = 3)and whose 

boundary 0Q is smooth. We consider the boundary value problem of 
the stationary Stokes equations: Seek a vector valued function u = 
(ui,U2,..・)un) (the velocity) and a scalar function p (the pressure) 
satisfying

(1)

/ —t
—z/Au + grad p ~ f 

div tz = 0
u = Q

in风 

in Q, 
on 3Q;

where i/ > 0 is the kinematic viscosity and f = (Ji,/25 Jn、) is a 
given vector valued function.

For results concerning existence,uniqueness and regularity of (weak) 
solutions of (1), we refer to [6].

In constructing Galerkin discretization for the Stokes problem, one 
encounters a major difficulty in incorporating the incompressibility 
condition into the finite element space^cf.[5]). Various techniques have 
been developed to avoid this difficulty. One such method consists in 
using a Lagrange multiplier technique (cf.[3,4])« In [1], they introduced 
the finite dimensional approximating spaces V： consisting of piecewise 
polynomial functions of degree < A:, > 1 for the velocity u that axe
piecewise solenoidal i.e. the constituent functions satisfy the incom
pressibility condition (strongly) on each triangle in the subdivision of 
the domain Q・ And they proved that these functions possess optimal 
approximating properties on the domains with curved boundaries.
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In this paper, we compute the dimension of V^and construct the 
basis of V^to provide an opportunity to use computer codes for real 
computations. In this paper, we will denote the set of polynomials of 
degree < A; by i.e.

f N )
Pk = '〉］ 호… Sv '지;2 2 • • . 3； a产 I〉: 喚 < k) 서… aN £ * }

・ 心 丿

We know that (see ［2］)

击mR=("

2. The dimension of Vg

Theorem 1. e (Pk)N\ divp = 0). Then

血心d%：).

Proof. Let= {科0矿 x岑 | 0 < rt < fc, £义注 L = % }・

Then Pk is the collection of all the possible finite linear combination of 
elements in AoU- • -UAjt, so we can say R = Span{>lo U Ai U • ■ ■ U Ak}> 
Obviously,

N
，X+i = ［丿 {如이C 4异 • 

t=i
First well show that for each 1 < z < TV,

(a
—ajt+i|afe+i € Span(Afc+i)

Choose :七馈...x1^ G At. If 七=0, then 七馈...工晉)g Afc+1 
and

房［ S(꺼:0矿 . • = z"： ... x岑 .
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If r, 0, then . x^)/(rt + 1) C Span(由:+丄))and

矿:苟호 ・ ・. xp+1 . ・. + 1)]、= 吋股 ①寄

Therefore Ak C 이:+i|a*+i € Span(Ajt+i) >, which implies

Span(Ak) C {寿<^+打(^+1 G SpanfAjt+i)} •

To prove the reverse inclusion, choose x^x^2 ... z# € -Aa：4-1, then there 
exist iq and G Ak such that

N
xlQak = (⑦:碱호 . . ・K$), where 0 < st<k and，、如

i=i
If z = io,

着 e너 = 아+成;아 m。

=ak + sg
= (1 + s?) 아:

which is in Span(Afc).
Ifi尹 io,

% —1

公诳)—%。百成(殊)

_ 스 了 z/1 t$n— 기duo*"] • • • t ' • • N

which is in Span(Afc). Therefore we showed, 

n+i|이k+1 £ Span(Afc+1) > C Span。裁).

Next, we will proved that div is a linear mapping from (Pk)N onto 
Pk-ii which implies the result

dim Vf，= dim(ker(div))
=dim (PkV — dim Pk-i

z(N + k +k-l\=N(， •
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First we take div to the polynomial in (7%)".

{ div(pi,p2,・.・,PN)I Pt € Ffc for all 1 < i < N}

= {Z：鹳 \P^Pk,l<i<N >

= {科 흘^ I Pi G Span(Ao U Ai U • • • U 山), 1 <i < N >.

Now choose E &虹 for some 1 < kt < k. Then

-스 € Span(A0 U Ai U • • • U 4矽t)

C Pfc-i

for 1 < 2 < -V, where E*=max{知盘％...,k^} < k・ Lefs show the 
reverse inclusion,

Pk~i = Span(Ao U & U • • • U Afc-i)
= SpanAo ® SpanAi ® ® SpanAt-i
= {**3pan(如}

© a2 G Span(A2)

© 이k € Span(Afc)

= {的"싸

Z?耘pjpi e Pk and pt - 0, if 4 尹 1) 

C ( div(,i,?2, • . . ,PN)I Pi € Pk} .

Therefore we proved div is a linear mapping from (PQN onto P^-i-
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3. The construction of a basis of
Case I : N = 2.

(i) k = 1
Theorem 1 gives dim Vf2 = 5. The basis is the following:

G) (?) (?) (o) (;)•
(ii) k = 2
The basis is the following:
The vector polynomials for k = 1, and

(iii) k = n
The basis is the set of vector polynomials for k = n - 1, and

f 0 \ / 0 \ ( xn \ ( 2此Tg
Vn7 \yn ) y-nx^y) \-(n - l)xn~2y2

(3xn~2y2 \ (-nxyn~l \
V-(n-2>n-v； ••- V yn )'

Case II ： N = 3.
(i) k 二리
Theorem 1 gives dim = 11.
The basis is the following:

(ii) k = 2
The basis is the set of the vector polynomials for k = 1 and

3 ⑴(9 0) CO GO
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