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A YANG-MILLS CONNECTION ON (S3,can)

Joon-Sik Park

1. Introduction and statement of a result
To 血d Yang-Mills connections in some principal fibre bundle is 

important. In this paper, we find a Yang-Mills connection in the or- 
thonomal frame bundle on (S3, can). Since (S3, can) and(SU(2),(,)) 
are homothetic, ( , ) being an arbitrary biinvariant metric on SU(2)； 
we treat(SU(2))( , )) in place of the base manifold (S3, can).

We prepare some notations. In this paper, we put M := SU(2) 
and G := 0(3). Let P(M, G) be the orthonormal frame bu효die over 
(M, ( , )0). Here ( , )0 is the biinvariant riemannian metric induced 
from (一1)・(Killing form of m). Here m is the Lie algebra of M. We 
put

(1.1)

Then {Xi, X》,X3) is an orthonormal basis of m with respect to ( , )o. 
The connection function a ([4], p.43) on mxm which is corresponding to 
the biinvariant riemannian connection of (M,( , )0) is given as follows 
([4], P-52):

(1-2) a(X,旳=；[X,Y], (X,Yem).

a(X»Xj) is uniquely expressed as

1 3
(1-3) a(K, Xj) = 5 £ c/Xk, (山=1,2,3), 

k=l
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where c/ is the structure constants of m with respect to the orthonor
mal basis {Xi,X2, X호}・ Let {01,be the dual 1-forms to the basis 
{Xi,X2,X3}・ Then, the connection form 3 and the curvature form Q 
with respect to frames are defined as follows:

(1.4) 3；=此鬲砰，

鴨=£y(a(Xk,a(X‘,Xj)) - q(X"(XGG))
(1.5) k<i

— a({X5이, Xj))俨/E.

We denote by Ap the totality of connections in the above given or
thonormal frame bundle P(Af, G) which is a principal fibre bundle. We 
also denote by g the Lie algebra of the structure group G of P(M, G). 
The Yang-Mzlls functional E on Ap is defined by

E(A) = i^||F(A)||2

for each A G Apy where F(A) is the curvature form of a given con
nection A. In fact, the connection form 3 of (1.4) with respect to 
frames belongs to and F(3)is equal to Q of (1.5). We de
note P(M,G^XAdQ by gp. Let fir(gjP),0 < r < 3, be the space 
of gp-valued r forms on M. The covariant exterior differentiation

: J2fc(0P) 이서"(9户 ) for A E Ap is defined by

(1.6) dA{4>) = + [A A 0], e Qfc(gp)).

We denote also by 8a the formal adjoint operator of dq, It is well 
known that 0 = 4 — A belongs to Q1(gp) for each A, A! G and a 
connection A G Ap is a Yang-Mills connection (a critical point of the 
Yang-Mills functional E、) if and only if

(1.7) 以 F(4) = 0.

Now we state our main theorem.
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THEOREM. The connection (1.4) with respect to frames in the or
thonormal frame bundle over (577(2))( , )o) is a Yang-Mills connection, 
Le.y the connection with respect to frames in the orthonormal frame 
bundle over (S3, can) is a Yang-Mills connection.

2. Proof of Theorem
We put Hi := 2^2X1, Ut := 2y/2X2 and 气:=2y/2X3. Then, We 

have
(2.1) [H1,U1] = 2V1,阡，柘]=2岳，and
From (1.2), (1.3) and (2.1), we obtain

广1 一广1_广2_ 2_ ：
c12 — c13 一 c12 ~ c23 — c13

= C312 = C12 = (1V2).
Using (1.4), (1.5) and (2.2), we get

c233 = 0,
(2-2)

(2-3) （3；）=
0 
e3 
-e2

(2-4) ㈣)=G)

-e3 
o 
e1

伊/\俨

o
o 

-o1 a e2 
-e1 a e3 -o2 a 伊

俨\ 艾)

伊A伊\
02 A 03

0 )
We denote (^x, F(3))(X,,XQ,3(Xj) and F(3)(X), XJ by %払,& 
and F}1 respectively. Thus, the connection u? in (1.4) is a Yang-Mills 
connection if and only if

3
(2-5)(城F(3))(XJ = £(▽,马 + [A},F3t]) = 0, (l<i< 3).

J=1
Ftom (1.3), (2.2) and (2.4), we get

(2.6)

珂3,

V1F13 = * 艮23 = F12,

V2F12 = V3F13 =

▽1形1 = %日23 —

\Vi J23 = V2F31 = V32*i2 = 0.
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Moreover, we obtain from (2.3) and (2.4), 
/ / 0

“1,耳2]=禺,砌=(务)(％

/ 0
[Ai, Ji3]=血,斑3]=(弱)(1

/n / 0
[厶2,尸12】=[厶3,禺3] = (―) ( 0

\ [/41,形3]=血，呂3】=[A3,F12]三O3

(2-7)

0 
0 
0

-1 
0 
0
0 
0 

-1

I)

9
where O3 denotes the zero matrix of order 3. We have from (2,6) and
(2.7)

3
(2.8) £(v,Ej + ⑷,q]) =。， O' = 1,2,3). 

1=1
Hence, the connection 3 with respect to frames in the orthonormal 
frame bundle over (SU(2), ( , )0) is a Yang-Mtlls connection.

REMARK. This theorem was previously known, and indeed J.P. 
Bourguignon and B. Lawson ([1], Theorem C on p.191) that this Yang- 
Mills fields on S3 is one of only two with small norm. But, the method 
proving this theorem in this paper is different and algebraic.
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