Pusan Kyongnam Math. J. 8(1992), No. 2, pp. 163-170

FUZZY *I***-RINGS**

YOUNG BAE JUN AND CHONG YUN LEE

The concept of a fuzzy set, introduced by Zadeh ([6]), was applied in [2] to generalize some of the basic concepts of general topology. Rosenfeld ([5]) applied this concept to the theory of groupoids and groups. The present paper constitutes a similar application to the elementary theory of Γ -rings.

We recall that a fuzzy set in a set S is a function μ from S into [0, 1]. Let μ and ν be fuzzy sets in a set S. Then we define

$$\mu = \nu \iff \mu(x) = \nu(x) \quad \text{for all } x \in S.$$
$$\mu \subseteq \nu \iff \mu(x) \le \nu(x) \quad \text{for all } x \in S.$$
$$(\mu \cup \nu)(x) = \max\{\mu(x), \nu(x)\} \quad \text{for all } x \in S.$$
$$(\mu \cap \nu)(x) = \min\{\mu(x), \nu(x)\} \quad \text{for all } x \in S.$$

More generally, for a family of fuzzy sets, $\{\mu_i | i \in I\}$, we define

$$(\cup \mu_i)(x) = \sup_{i \in I} \{\mu_i(x)\}, \quad x \in S$$
$$(\cap \mu_i)(x) = \inf_{i \in I} \{\mu_i(x)\}, \quad x \in S.$$

DEFINITION 1. ([1]) If $M = \{x, y, z, ...\}$ and $\Gamma = \{\alpha, \beta, \gamma, ...\}$ are additive abelian groups, and for all x, y, z in M and all α, β in Γ , the following conditions are satisfied

- (1) $x \alpha y$ is an element of M,
- (2) $(x+y)\alpha z = x\alpha z + y\alpha z, \ x(\alpha+\beta)y = x\alpha y + x\beta y, \ x\alpha(y+z) = x\alpha y + x\alpha z,$

(3)
$$(x\alpha y)\beta z = x\alpha(y\beta z),$$

then M is called a Γ -ring.

Received October 7, 1992.

DEFINITION 2. ([1]) A subset A of the Γ -ring M is a left (right) ideal of M if A is an additive subgroup of M and

$$M\Gamma A = \{x \alpha y | x \in M, \alpha \in \Gamma, y \in A\}(A\Gamma M)$$

is contained in A. If A is both a left and a right ideal, then A is a two-sided ideal, or simply an ideal of M.

DEFINITION 3. A fuzzy set μ in a Γ -ring M is called a fuzzy left (right) ideal of M if

(4) $\mu(x-y) \geq \min\{\mu(x), \mu(y)\},\$

(5) $\mu(x\alpha y) \ge \mu(y) \quad (\mu(x\alpha y) \ge \mu(x)),$

for all $x, y \in M$ and all $\alpha \in \Gamma$.

A fuzzy set μ in a Γ -ring M is called a fuzzy ideal of M if μ is both a fuzzy left and a fuzzy right ideal of M.

We note that μ is a fuzzy ideal of M if and only if

(4) $\mu(x-y) \ge \min\{\mu(x), \mu(y)\},\$

(6) $\mu(x\alpha y) \geq \max\{\mu(x), \mu(y)\},\$

for all $x, y \in M$ and all $\alpha \in \Gamma$.

Throughout this paper, all proofs are going to proceed the only left cases, because the right cases are obtained from similar method. We denote 0_M the zero element of a Γ -ring M.

PROPOSITION 1. If μ is a fuzzy left (right) ideal of a Γ -ring M, then (7) $\mu(0_M) \ge \mu(x)$, (8) $\mu(-x) = \mu(x)$, (9) $\mu(x-y) = \mu(0_M)$ implies $\mu(x) = \mu(y)$, for all $x, y \in M$.

Proof. (7) We have that for any $x \in M$,

$$\mu(0_M) = \mu(x - x) \ge \min\{\mu(x), \mu(x)\} = \mu(x).$$

(8) By (7), we have that

$$\mu(-x) = \mu(0_M - x) \ge \min\{\mu(0_M), \mu(x)\} = \mu(x)$$

for all $x \in M$. Since x is arbitrary, we conclude that $\mu(-x) = \mu(x)$.

(9) Assume that $\mu(x-y) = \mu(0_M)$ for all $x, y \in M$. Then

$$\mu(x) = \mu(x - y + y)$$

$$\geq \min\{\mu(x - y), \mu(y)\}$$

$$= \min\{\mu(0_M), \mu(y)\}$$

$$= \mu(y).$$

Similarly, using $\mu(y-x) = \mu(x-y) = 0$, we have $\mu(y) \ge \mu(x)$.

EXAMPLE 1. If G and H are additive abelian groups and $M = Hom(G, H), \Gamma = Hom(H, G)$ then M is a Γ -ring with the operations pointwise addition and composition of homomorphisms ([1]). Define a fuzzy set $\mu : M \to [0, 1]$ by $\mu(0_M) = t_1, \mu(f) = t_2, 0 \leq t_2 < t_1 \leq 1$, where f is any member of M with $f \neq 0_M$. Routine calculations give that μ is a fuzzy left (right) ideal of M.

THEOREM 1. If μ is a fuzzy left (right) ideal of a Γ -ring M, then the set

$$A := \{x \in M | \mu(x) = \mu(0_M)\}$$

is a left (right) ideal of M.

Proof. Let $x, y \in A$. Then by (4),

$$\mu(x-y) \geq \min\{\mu(x), \mu(y)\} = \mu(0_M).$$

It follows from (7) that $\mu(x-y) = \mu(0_M)$, so that $x-y \in A$. This means that A is an additive subgroup of M. Now let $u \in A$, $\alpha \in \Gamma$ and $x \in M$. Then by (5), $\mu(x\alpha u) \ge \mu(u) = \mu(0_M)$ and so $\mu(x\alpha u) = \mu(0_M)$. Therefore $x\alpha u \in A$. This completes the proof.

THEOREM 2. The intersection of any family of fuzzy left (right) ideals of a Γ -ring M is also a fuzzy left (right) ideal of M.

Proof. Let $\{\mu_i\}$ be a family of fuzzy left ideals of a Γ -ring M. Then for every $x, y \in M$ and $\alpha \in \Gamma$,

$$(\cap \mu_{i})(x - y) = \inf \{ \mu_{i}(x - y) \}$$

$$\geq \inf \{ \min \{ \mu_{i}(x), \mu_{i}(y) \} \}$$

$$= \min \{ \inf \mu_{i}(x), \inf \mu_{i}(y) \}$$

$$= \min \{ (\cap \mu_{i})(x), (\cap \mu_{i})(y) \}$$

and

$$(\cap \mu_{i})(x\alpha y) = \inf \{\mu_{i}(x\alpha y)\}$$
$$\geq \inf \{\mu_{i}(y)\}$$
$$= (\cap \mu_{i})(y).$$

DEFINITION 4. ([3]) Let μ be a fuzzy set in a set S. For $t \in [0, 1]$, the set

$$\mu_t := \{x \in S | \mu(x) \ge t\}$$

is called a level subset of μ .

THEOREM 3. Let μ be a fuzzy set in a Γ -ring M. Then

(a) if μ is a fuzzy left (right) ideal of M, then μ_t is a left (right) ideal of M for all $t \in [0, \mu(0_M)]$ which is called the level left (right) ideal of M.

(b) if μ_t is a left (right) ideal of M for all $t \in Im(\mu)$, then μ is a fuzzy left (right) ideal of M.

Proof. (a) Assume that μ is a fuzzy left ideal of M. Let $x, y \in \mu_t$. Then $\mu(x) \ge t$ and $\mu(y) \ge t$. It follows that

$$\mu(x-y) \geq \min\{\mu(x), \mu(y)\} \geq t,$$

and that $x - y \in \mu_t$. Now let $x \in M$, $\alpha \in \Gamma$ and $y \in \mu_t$. Since μ is a fuzzy left ideal, $\mu(x\alpha y) \ge \mu(y) \ge t$. Thus $x\alpha y \in \mu_t$. Therefore μ_t is a left ideal of M.

(b) Let μ_t be a left ideal of M. We must prove that (4) and (5) hold. If (4) is not true, then

$$\mu(x-y) < \min\{\mu(x), \mu(y)\}$$

for some $x, y \in M$. For these elements x, y, there exist $t_i, t_j \in Im(\mu)$, say $t_i < t_j$, such that $\mu(x) = t_i, \mu(y) = t_j$. Then

$$\mu(x-y) < \min\{\mu(x), \mu(y)\} = t_i,$$

and so $x - y \notin \mu_{t_i}$. This is a contradiction. If (5) is not true, then for a fixed $\alpha \in \Gamma$, there exist $x, y \in M$ such that $\mu(x\alpha y) < \mu(y)$. Let $s_i, s_j \in Im(\mu)$ be such that $s_i < s_j$, $\mu(x) = s_i$ and $\mu(y) = s_j$. Then $\mu(x\alpha y) < \mu(y) = s_j$ and so $x\alpha y \notin \mu_{s_j}$, a contradiction. This completes the proof.

166

THEOREM 4. Let A be a left (right) ideal of a Γ -ring M. Then for any $t \in (0,1)$, there exists a fuzzy left (right) ideal μ of M such that $\mu_t = A$.

Proof. Let $\mu: M \to [0,1]$ be a fuzzy set defined by

$$\mu(x) = \begin{cases} t & \text{if } x \in A, \\ 0 & \text{if } x \notin A, \end{cases}$$

where t is a fixed number in (0, 1). Then clearly $\mu_t = A$. Let $x, y \in M$ and $\alpha \in \Gamma$. By routine calculations, we have that

$$\mu(x-y) \ge \min\{\mu(x), \mu(y)\}.$$

Now if $y \in A$, then $x\alpha y \in A$ because A is a left ideal of M. Hence $\mu(x\alpha y) = t = \mu(y)$. If $y \notin A$, then $\mu(y) = 0$ and so $\mu(x\alpha y) \ge \mu(y)$. Therefore μ is a fuzzy left ideal of M.

THEOREM 5. Let μ be a fuzzy left (right) ideal of a Γ -ring M Then two level left (right) ideals μ_{t_1} and μ_{t_2} (with $t_1 < t_2$) of μ are equal if and only if there is no $x \in M$ such that $t_1 \leq \mu(x) < t_2$.

Proof. (\Rightarrow) Suppose $t_1 < t_2$ and $\mu_{t_1} = \mu_{t_2}$. If there exists $x \in M$ such that $t_1 \leq \mu(x) < t_2$, then μ_{t_2} is a proper subset of μ_{t_1} . This is a contradiction.

(\Leftarrow) Assume that there is no $x \in M$ such that $t_1 \leq \mu(x) < t_2$. From $t_1 < t_2$ it follows that $\mu_{t_2} \subseteq \mu_{t_1}$. If $x \in \mu_{t_1}$, then $\mu(x) \geq t_1$ and so $\mu(x) \geq t_2$ because $\mu(x) \not\leq t_2$. Hence $x \in \mu_{t_2}$. This completes the proof.

. THEOREM 6. Let M be a Γ -ring and μ a fuzzy left (right) ideal of M. If $Im(\mu) = \{t_1, ..., t_n\}$, where $t_1 < ... < t_n$, then the family of left (right) ideals μ_{t_1} (i = 1, ..., n) constitutes all the level left (right) ideals of μ .

Proof. Let $t \in [0,1]$ and $t \notin Im(\mu)$. If $t < t_1$, then $\mu_{t_1} \subseteq \mu_t$. Since $\mu_{t_1} = M$, it follows that $\mu_t = M$, so that $\mu_t = \mu_{t_1}$. If $t_i < t < t_{i+1} (1 \le i \le n-1)$ then there is no $x \in M$ such that $t \le \mu(x) < t_{i+1}$. From Theorem 5, we have that $\mu_t = \mu_{t_{i+1}}$. This shows that for any $t \in [0,1]$ with $t \le \mu(0_M)$, the level left ideal μ_t is in $\{\mu_{t_i} | 1 \le i \le n\}$.

THEOREM 7. Let A be a nonempty subset of a Γ -ring M and let μ be a fuzzy set in M such that μ is into $\{0,1\}$, so that μ is the characteristic function of A. Then μ is a fuzzy left (right) ideal of M if and only if A is a left (right) ideal of M.

Proof. Assume that μ is a fuzzy left ideal of M. Let $x, y \in A$. Then $\mu(x) = \mu(y) = 1$. Thus $\mu(x - y) \ge \min\{\mu(x), \mu(y)\} = 1$ and so $\mu(x - y) = 1$. This means that $x - y \in A$. Therefore A is an additive subgroup of M. Let $x \in M, y \in A$ and $\alpha \in \Gamma$. Then $\mu(x\alpha y) \ge \mu(y) = 1$ and hence $\mu(x\alpha y) = 1$. So $x\alpha y \in A$, and A is a left ideal of M. The proof of converse is similar to that of Theorem 4.

DEFINITION 5. ([1]) Let M and N both be Γ -rings, and θ a mapping of M into N. Then θ is a Γ -homomorphism iff $\theta(x + y) = \theta(x) + \theta(y)$ and $\theta(x\alpha y) = \theta(x)\alpha\theta(y)$ for all $x, y \in M$ and $\alpha \in \Gamma$.

DEFINITION 6. ([5]) If μ is a fuzzy set in M, and f is a function defined on M, then the fuzzy set ν in f(M) defined by

$$\nu(y) = \sup_{x \in f^{-1}(y)} \mu(x)$$

for all $y \in f(M)$ is called the image of μ under f. Similarly, if ν is a fuzzy set in f(M), then the fuzzy set $\mu = \nu \circ f$ in M (that is, the fuzzy set defined by $\mu(x) = \nu(f(x))$ for all $x \in M$) is called the preimage of ν under f.

THEOREM 8. A Γ -homomorphic preimage of a fuzzy left (right) ideal is a fuzzy left (right) ideal.

Proof. Let $\theta: M \to N$ be a Γ -homomorphism of Γ -rings, ν a fuzzy left ideal of N and μ the preimage of ν under θ . Then

$$\mu(x - y) = \nu(\theta(x - y))$$

= $\nu(\theta(x) - \theta(y))$
 $\geq \min\{\nu(\theta(x)), \nu(\theta(y))\}$
= $\min\{\mu(x), \mu(y)\}$

and

$$\mu(x\alpha y) = \nu(\theta(x\alpha y))$$
$$= \nu(\theta(x)\alpha\theta(y))$$
$$\geq \nu(\theta(y))$$
$$= \mu(y)$$

for all $x, y \in M$ and $\alpha \in \Gamma$.

We say that a fuzzy set μ in M has the sup property ([5]) if, for any subset T of M, there exists $t_0 \in T$ such that

$$\mu(t_0) = \sup_{t\in T} \mu(t).$$

THEOREM 9. A Γ -homomorphic image of a fuzzy left (right) ideal which has the sup property is a fuzzy left (right) ideal.

Proof. Let $\theta: M \to N$ be a Γ -homomorphism of Γ -rings, μ a fuzzy left ideal of M with the sup property and ν the image of μ under θ . Given $\theta(x), \theta(y) \in \theta(M)$, let $x_0 \in \theta^{-1}(\theta(x)), y_0 \in \theta^{-1}(\theta(y))$ be such that

$$\mu(x_0) = \sup_{t\in\theta^{-1}(\theta(x))}\mu(t), \qquad \mu(y_0) = \sup_{t\in\theta^{-1}(\theta(y))}\mu(t),$$

respectively. Then

$$\begin{split} \nu(\theta(x) - \theta(y)) &= \sup_{z \in \theta^{-1}(\theta(x) - \theta(y))} \mu(z) \\ &\geq \mu(x_0 - y_0) \\ &\geq \min\{\mu(x_0), \mu(y_0)\} \\ &= \min\{\sup_{t \in \theta^{-1}(\theta(x))} \mu(t), \sup_{t \in \theta^{-1}(\theta(y))} \mu(t)\} \\ &= \min\{\nu(\theta(x)), \nu(\theta(y))\}, \end{split}$$

and for any $\alpha \in \Gamma$,

$$\nu(\theta(x)\alpha\theta(y)) = \sup_{z\in\theta^{-1}(\theta(x)\alpha\theta(y))} \mu(z)$$

$$\geq \mu(x_0\alpha y_0)$$

$$\geq \mu(y_0)$$

$$= \sup_{t\in\theta^{-1}(\theta(y))} \mu(t)$$

$$= \nu(\theta(y)).$$

This completes the proof.

References

- 1. W.E. Barnes, On the Γ -rings of Nobusawa, Pacific J. Math. 18 (1966), 411-422.
- 2. C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- 3. P.S. Das, Fuzzy groups and level subgroups, J. Math. Anal. Appl. 84 (1981), 264-269.
- 4. T.S. Ravisankar and U.S Shukla, Structure of Γ-rings, Pacific J Math. 80 (1979), 537-559.
- 5. A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517.
- 6. L.A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353

Department of Mathematics Education Gyeongsang National University Chinju 660–701, Korea

Department of Mathematics Education Kyungnam University Masan 631–701, Korea