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TYPES OF 乙 e Alg£t

Jong Geoun Kim and Dae Yeon Ha

1. Introduction
The study of non-self-adjoint operator algebras on Hilbert space 

was begun in 1974 by Arveson ([1]). Recently, such algebras have been 
found to be of use in physics, in electrical engineering, and in general 
systems theory. Of particular interest to mathematicians are reflex
ive algebras with commutative lattices of invariant subspaces. One 
of the most important classes of such algebras is the seguence Alg£2, 
Alg£4, • • •, Alg£oo of utridiagonalr algebras, discovered by Gilfeather 
and Larson ([디). We shall often disregard the distinction between an 
orthogonal projection and its range space. Let £ be a family of orthog
onal projections acting on a Hilbert space ?七 Then Alg£ is an algebra 
containing I (Z represents the identity operator acting on Ti) and Alg£ 
is closed in the weak operator topology.

In this paper, if 二 © Alg£t is a von Neumann algebra, we want to 
find out what its type is.

We will introduce the terminologies which axe used in the above 
general introduction and in the general theorems of this paper.

Let C be a subset of the 시ass of all bounded operator acting on a 
Hilbert space C is called self-adjoint if A* is in C for every A in C. 
If C is a vector space over C and if C is closed under the composition 
of maps, then C is called an algebra. C is called a self-adjoint algebra 
provided A* is in C for every A in C. Otherwise, C is called a non-self
adjoint algebra. C is a C*-algebra if C is a self-adjoint algebra which is 
contains I and closed in the norm topology. C is a von Neumann algebra 
if C is a C*-algebra which is closed in the weak operator topology.

For any subset A C 0(7Y), we shall denote by A1 the conunutant of 
A :

= {B € : BA = AB for any A in A}.

Received July 31, 1992.

117



118 Jong Geoun Kim and Dae Yeon Ha

For any subset A C Ar is an algebra which contains the identity 
operator I in B아0 ； moreover, it is easy to check that A! is closed 
in the strong operator topology (equivalently, it is closed in the weak 
operator topology). If A is sel^adjoint, then A! is a von Neumann 
algebra. In particular, if C is a von Neumann gdgebra, then Cf is a von 
Neumann algebra ([24]). Let C C B(处)be a von Neumann algebra and 
C1 C B(处)its commutant. Then C Pl Cz is the common center of the 
algebras C and C. It is obvious that CflC1 C 3(处)is a (commutative) 
von Neumann algebra.

A von Neumann algebra is called a factor if its center is equal to the 
set of all saclax mutiples of the identity operator.

Let be a complex Hilbert space. A linea호 manifold in is a subset 
of H which is closed under vector addition and under multiplication by 
complex numbers. A subspace of ” is a closed manifold.

We shall often disregard the distinction between an orthogonal pro
jection and its range space. Thus we consider a subspace lattice as 
consisting of orthogonal projections or subspaces and we may use the 
same notation to indicate either. This occurs most often in the fe산linL 
cal arguments.

Let £ be a subset of all orthogonal projections acting on a Hilbert 
space 7Y. Then C is called a lattice if £ is closed under 난虻 operators 
uAn and "V” for finitely many elements of £八 If £ is a lattice of 
orthogonal projections acting on 火} Alg£ denotes 나圮 algebra of all 
bounded operators acting on 7Y that leave invariant every orthogonal 
projection in £, that is,

Alg£ = {A E B(处):AE = EAE for any E in £}.

A subspace lattice £ is a strongly closed lattice of orthogonal projec
tions acting on a Hilbert space containing 0 and I (0 represents 
zero operator acting on 7Y). Dually, if C is a subalgebra of the set 
of all bounded operators acting on ", then LatC is the lattice of all 
。호thogonal projections invariant for each operator in C. An algebra C 
is reflexive if C = AlgLatC. A lattice C is reflexive if £ = LatAlg£. 
A lattice C is commutative if each pair of orthogonal projections in 
£ commutes. Especially, if £ is a commutative subspace lattice, or 
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CSL, then Alg£ is called a CSL algebra. Subspace lattices need not be 
reflexive ; however, commutative ones are reflexive ([5]). If /2? , ■ , 5 
fn are vectors in some Hilbert space, then [见 " …，fn] means the 
subspace generated by the vectors /1? /2, * * *, fn-

Let be a Hilbert space for each id Then

n = {f = {f.): ft € h, 2仔||2 < 8} 
t

is a Hilbert space when the algebraic structure, inner product, and 
norm are defined by

{/*} + {%} = {ft+St}, 
11{£}帖=£|时 2.

I

The resulting Hilbert space 7i is called the (Hilbert) direct sum of
”2, • • •, and is denoted by〉二

Suppose that T~lt is a Hilbert space, and At E for each i. 
If sup{||4J| : z G Z} < oo, the equation A{ft} = {Azft} defines a 
bounded operate A acting on We call A the direct sum
>二 of the family {At}. We have

|| £围시| =sup{||4j| : i e I), 
t

(£«)* = 2&4, 
t 2

£ ㊉(Q& + 糾)=a(£ ®A) + 伙£ ®Bt),
I I t

(£ M)(£ ®b.)= £ ®AtBt.
I I I

when At, Bt € B아and a, # e C.
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2. General Theorems
Let be a separable Hilbert space and C C B(处). C is a v( it 

Neumann algebra if C is a C*-algebra which is closed in tht ek 
operator topology. If £ is a family of orthogonal projections actirg 
on then Alg£ is an algebra containing I and closed in the wc ' 
operator topology. Therefore in order to prove that Alg£ is at 爪 
Neumann algebra, it is sufficient to show that Alg£ is self-adjoint.

THEOREM 1. Let £ be a family of orthogonal projections a사f均 心 % 
a Hilbert space 火. Then
(a) Alg£ is an algebra containing I (I represents the identity operator 
acting on T~L)
(b) Alg£ is closed in the norm topology
(c) Alg£ is closed in the weak operator topology.

Proof, (a) Let A and B be in AlgZ. Then AE = EAE and BE - 
EBE for all E in £. So (A + B)E = AE + BE = EAE + EBE 二 
E(A + B)E for all E in £. Hence A 4- B is in Alg£. For every a G

(aA)E = a(AE) = a(EAE) = E(aA)E.

Hence aA is in Alg£, and

(AB)E = A(BE) = A(EBE) = (AE)(BE) = (EAE)BE
=EA(EBE) = (E4)(BE) =

Hence AB is in Alg£. Thus Alg£ is an algebra. For every E in £, 
E = E2 and so IE = EIE. Hence I is in Alg£.
(b) Let (j4n} be a sequence in Alg£ and let An converge to A in the 
norm topology. Then for any E in £ ^AnE 一 4피| < ||An — A||||E|| 
=||An - All and \\EAnE — EAE\\ < \\E\\\\An — A\\\\E\\ = ||厶-A||. 
Hence AnE and EAnE converge to AE and EAE in the norm topology 
for any E in £, respectively. Since AnE = EAnE for all E in £, we 
have AE = EAE. Therefore A is in Alg£.
(c) Since Alg£ is an algebra, it is convex. By [20], the weak and strong 
operator closures of Alg£ coincide. So we have to show that Alg£ is 
closed in the strong operator topology. Let (An} be a sequence in Alg£ 
and let An converge strongly to A. Then Anf converges to Af for all 
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f in 处.Since AnE = EAnE for all E in £ and AnEf converges to 
AEf for all / in EAnEf converges to EAEf for all / in ”.Hence 
AEf = EAEf for all / in and hence AE = EAE for all in £. So 
A is in Alg£. That is, Alg£ is closed in the strong operator topology.

LEMMA 2. Let 耻 and £2 be families of orthogonal projections act
ing on a Hilbert space H. If C £2, then AlgZj C Alg£i-

Proof. Let A be in AlgZ：2・ Then AE = EAE for all E in £2- Since 
£1 C £2, A.E = EAE for all E in Hence A is in Alg£i，

Let E and F be orthogonal projections acting on a Hilbert space 
?七 Then a partial order relation < is described as follows : E < F ii 
and only if EF = FE = E. E, F are said to be mutually orthogonal 
if EF = 0.

LEMMA 3. Let C be a lattice of orthogonal projections acting on 
a Hilbert space and let be a family of mutually orthogonal pro
jections acting on If C is the lattice generated by :F〉then Alg£ = 
Alg 戶.

Proof, By Lemma 2, we shall show that AlgT7 is included in Alg£. 
Let A be an element in AlgT7 and let E be in £. Since :F is the family 
of mutually orthogonal projections acting on there exists Ft in 戶' 
z = 1, 2, • ■ •, n such that E = V：리* Hence

n n
E4E = （V%]氏）4（V：=]E） = （£rt）A（£Ft）

:=1 :=1

n n n

=f,） + F2，4（£ f,） + • • • + f：）
t=l 1=1 i—l

=F]AF[ + F2AF2 + …+ FnAFn
=AFX + AF2 + •・• + AFn

n

=厶（〉負）=A（V 顷）=AE.
i=l

Thus A is in Alg£.
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THEOREM 4. Let H be a separable Hilbert space and let :F be 
a family of mutually orthogonal projections acting on 7i such that 

、WF = I. IfC is the lattice generated by 7七 then Alg£ is a von Neumann 
algebra.

Proof. From Theorem 1, Alg£ is an algebra containing I and closed 
in the weak operator topology. Therefore it is sufficient to show that 
Alg£ is self- adjoint. Let A be an element in Alg£. Suppose that :F 
={ Ei, £?2? * , , }? where Et is an orthogonal projection acting on H for 
allz = 1, 2, • • -. Since A is in Alg£, AEZ = EtAEt for all z = 1, 2, • • •. 
By AE^~ = E^-AE^- for all z = 1, 2, ••- and hence ［마** = E^-A*E^~ 
for all i = 1, 2, • • •. Since E^~ = I —E* for each i = 1, 2, • - •,

= A* - = （/ ——&）
=4* 一瓦須一厶*& +玖A*玖.

Hence A*Et = EtA*Et for all z = 1, 2, • • -. Therefore by Lemma 3, 
A* is in Alg£, i.e. Alg£ is self-adjoint.

THEOREM 5. Let be a separable Hilbert space and let J7 be a 
mutually orthogonal family of closed subspaces of H and let £ be the 
lattice generated by :F. If V77 丰 then Alg£ is not a von Neumann 
algebra.

Proof. Suppose that :F = （TYi, 7^2, • - • where 7Y, is a closed sub
space of 7Y for all z = 1, 2, • •. Let A be in Alg£. Then A is in. Alg戶 
by Lemma 3. Hence A has the following matrix form on : 

0
B

where Ati : ?—> 7Yt is an operator such that Att = A\^t for all i 
=1, 2, ■ • •, B and C axe operators from （V•戶）丄 into、WF and （V•户）丄, 
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respectively and all other entries are 0. I효 particular, we can take an 
operator Aq in Alg£ which has a nonzero operator Bq : (V》7) 丄 一> 니:F 
in the matrix from (*). Therefore Alg£ is not self-adjoint. Thus Alg£ 
is not a von Neumann algebra.

THEOREM 6. ([24]) Let 7Y be a Hilbert space and let C C B(h) be 
a *-algebra of operators with I EC. Then the following statements are 
equivalent,
(a) C is a von Neumann algebra.
(b) C = C , where C is the bicommutant of C.

THEOREM 7. Let be a family of orthogonal projections acting on 
a separable Hilbert space Tit such that \j = I for each z. If £, is the 
lattice generated by 石 for each i, then £[ ®Alg£t = {A = :
4헝 € Alg£2? supz{j|A2||} < oo} is a von Neumann algebra.

Proof. Let 7Y = Let Et £ 3(H) be the orthogonal projec
tion onto and let Z)= {B = : Bz G (Alg£：)/, sup」|LB』} <
cxd). Put A = ® Alg£j. Then A and 7) are ^-algebras of operators
acting on W, and AB — for each A E A and B W T) (i.e., A 
C £)' or equivalently, 7? C ). Now suppose that T E B(7Y) com
mutes with each ope호ator in P. Since Et is in P, TEZ — for each 
z, and if Tt — T then Tt G 幻 and T = ®TZ. Hence if 
B £ T入 B = £” ®Bt with each Bx e (Alg£z)\ then®TtBz = TB 
=BT =以 ®BlTl So TlBl = BtTly for each Bt € (Alg£t)\ i.e., Tt 
G (Alg£j) =Alg£t. Thus / £ 人 so £)' = A. Therefore = 乂”. By 
Theorem A = ® Alg£t is a von Neumann algebra.

Interchanging the 호oles of Alg£t and (Alg£l)\ we obtain A! = T>. 
Hence we can get the following corollary.

COROLLARY 8 Let and be families as defined in Theorem 7. 
L4 = £[ ©Alg£J, then Af = £丄叙Alg£ J.

From Lemma 2, we can get the following lemma.

LEMMA 9. Let Fl and be families of orthogonal projections act
ing on a Hilbert space for each i. If T7, C for each i, then 
£、®Alg£t c ®Alg5；.

FYom Lemma 3, we can get the following lemma.
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LEMMA 10. Let be a lattice of orthogonal projections acting 
on a Hilbert space 7{t for each i and let be a family of mutually 
orthogonal projections acting on for each i. If £t is the lattice 
generated by 石 for each i, then，二 ®Alg£t = ©AlgJ7：.

DEFINITION 11. Let be a Hilbert space. Let C C B(7i) be a von 
Neumann algebra and let Pc be the set of orthogonal projections in C.
(a) Two orthogonal projections F in Pc are said to be equivalent, 
and this relation is denoted by E 〜F, if there exists a partial isometry 
UrnC such that E = U*U and F = UU* ; then UE = U = FU. We 
say that E is dominated by F, and we denote by E Y F this relation, 
if E is equivalent to흐 subprojection of F.
(b) An orthogonal projection E in Pc is said to be abelian if ECE is 
commutative.
(c) An orthogonal projection E in Pc is said to be finite if whenever 
E F < E for an orthogonal projection F in 死，it follows that 
F = E.
(d) An orthogonal projection E in Pc is said to be a central projection 
if belongs to the center C ClC1 of C.
(e) An orthogonal projection E in Pc is said to be properly infinite if 
whenever PE is finite, for each central projection P in Pc? it follows 
that PE = 0.

DEFINITION 12. Let 7/ be a Hilbert space and let C C B(处)be a 
von Neumann algebra.
(a) C is said to be finite if / is a finite orthogonal projection.
(b) C is said to be semifinite if any nonzero central projection contains 
a nonzero finite orthgonal projection.
(c) C is said to be of type I if any no교zero central projection contains 
a nonzoro abelian orthogonal projection.
(d) C is said to be of type II if it is semifinite and it does not contain 
any nonzero abelian orthogonal projection.
(e) C is said to be of type III if it dose not contain any nonzero finite 
orthogonal projection.
(f) C is said to be type Ifin if it is finite and of type I.
(g) C is said to be type L* if it not finite and it is of type /.
(h) C is said to be of type IJi if it is finite and of II.
(i) C is said to be of type 11^ if it is not finite, but it is of type II.
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LEMMA 13. ([25]) Let be a Hilbert space. Then B(7i) is of type 
L

LEMMA 14. Let 7Y be a separable Hilbert space and let C C B(7i) 
be a von Neumann algebra.Then C is finite if and only if dim 处 < oo.

EXAMPLE 15. Let be a separable infinite Hilbert space with an 
orthonormal basis {处)处广 * • } and let :F ~ {{이 : z = 1,2, • • • }. If £ is 
the lattice generated by :F、then Alg£ is of type 1^.

THREOREM 16. Let H be a separable infinite Hilbert space and let 
be a family of mutually orthogonal_projection acting on H such that 

V戶= /. If £ is the lattice generated by J7, then Alg£ is of type L。

Proof. Suppose that :F = {网’一电, … } and is 나closed sub
space of H such that = 7Yt fo호 all 2 = 1,2, ■ • •. Let A be in 
Alg£. Since Alg£ = Alg戶 by Lemma 3, A is in AlgT7. Hence A has 
the following matrix form on ®7Yt :

/ 가队 하匕2 火3 " \
/ L、、 Us U 〜

厶22 0 ,

厶33

\ 0 •.丿

where 4八： is the operator such that Alt = A | 火'for all
z = 1,2, • • •. Let B be in (AZg£)‘ and let BtJ :叫—H% be the operator 
such that Bl} = EtB for all — 1,2, • ■ ■. Since AB = BA for all 
A in Alg£, AltBu = BttAn for all z = 1,2, * • •, and Bt3 = 0 (z 尹，'； 
很=1,2,…).So

f P\i 0 0 0 , , , \
0 P22 0 0

p = 0 0 P33 0

k : : : >

is a nonzero central projection in Alg£ if and only if P药 is an orthogonal 
projection acting on for all ? = 1,2, • and Pkk is not zero for some 
fc. If Pkk is a nonzero orthogonal projection acting on Hk for some fc,
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Pkk contains a subprojectidn Fkk of rank one. Let F be the orthogonal 
projection acting on such that EkF \^k = Fkk and EtF =
0 if i fc or J A:. Then F is Alg£ and F is a nonzero abelian 
subprojection of P. Hence Alg£ is of type Z. By Lemma 14, Alg£ is 
of type /qo-

THEOREM 17. Let be a family of mutually orthogonal projec
tions acting on a separable Hilbert space such that V方=I for 
each i. If £t is the lattice generated by :F\ for each i,then » ®Alg£, 
is of type 农.

Proof. Let P^be a nonzero central orthogonal projection in ㊉ 
Alg£, for each i. Then P =。二 ® where Pt is in Alg£t for each 
夜 Since Alg£t is of type loo for each i by Theorem 16, there exist 
a nonzero abelian subprojection Ft of Pt in Alg£t for each i. Hence 
Z丄 eF is a nonzero abelian subprojection of P in ® Alg£t. There
fore © Alg£t is of type 农.
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