GALAXY CORRELATION IN A BUBBLY UNIVERSE

  • Published : 1992.12.31

Abstract

Recent redshift surveys suggest that most galaxies may be distributed on the surfaces of bubbles surrounding large voids. To investigate the quantitative consistency of this qualitative picture of large-scale structure, we study analytically the clustering properties of galaxies in a universe filled with spherical shells. In this paper, we report the results of the calculations for the spatial and angular two-point correlation functions of galaxies. With ${\sim}20%$ of galaxies in clusters and a power law distribution of shell sizes, $n_{sh}(R){\sim}R^{-{\alpha}}$, ${\alpha}\;{\simeq}\;4$, the observed slope and amplitude of the spatial two-point correlation function ${\xi}_{gg}(r)$ can be reproduced. (It has been shown that the same model parameters reproduce the enhanced cluster two-point correlation function, ${\xi}_{cc}(r)$). The corresponding angular two-point correlation function $w({\theta})$ is calculated using the relativistic form of Limber's equation and the Schecter-type luminosity function. The calculated w(${\theta}$) agrees with the observed one quite well on small separations (${\theta}{\lesssim}2deg$).

Keywords