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SHORTEST PATH FOR ROBOT CAR

Chesoong Kim, Sangbok Ree*

Abstract

In this paper, we consider the shortest path problem of a Robot car moving
in a workspace which consists of some obstacles. The motion of the Robot car
is considered to have initial and final directions with some restrictions in the
curvature of the path. At first we consider the problem in the case of having
no obstacles and we give an analytical solution. Then we present an algorithm
to find a feasible path in the case of having obstacles and a method to improve
this feasible path into a minimal path. Some computational results using Graph

theory and Linear programming have been included.

1. Introduction

The Robot Car in our problem (Fig. 1) consists of 4 wheels as normal automobile,
2 of them are fixed at the rear and the other one called the steering wheel in the front
which steers and drives the vehicle. We have a restriction on the steering wheel,
i.,e., it can turn left or right upto a certain angle say 06 (Fig. 1) which will cause
a restriction on the curvature of the Robot car path. Also the vehicle does not move
backwards. In the workspace there are several things which we call as obstacles

(including the work stations)and we assume that they have polygonal shapes. Figure
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2 provides an intuitive feeling about the problem i.e. finding a path from placement
A to placement B with initial and final directions TJ’V of robot car at A and B
respectively. This curve should be smooth enough in order to be followed by our robot

and wuth some restrictions on its curvature.

2. Shortest Path without Obstacles

Given are the two points A and B and the two unit vectors being ﬁ and v at
A and B respectively. We are interested in a path, i.e. a curve in the plane, of
minimal length from A to B with tangent vectors ﬁ and _\7 and A and Brepectively.

Thus, if we denote I' as:

odometer
Light Source |

.l |

wheel /4

— stecering

O O

Figure 1:Model of the Robot car

= (X ) ER?, a<t<b, |X| =1, X(a) =A, X (b) =B, X (a) =U, X (b) =V}

We wish to find a curve in I with minimal length.

Non-existence Obstacles

It is easy to see that 3 A,B € R? and 6%7' € R? for which no path of minimal
length in I' exists. So, we need to pose some further restriction on our curve. From
the structure of the Robot car we know that the front wheel can twmn in a certain

range. ie. the angle € in the Figure 1 is restricted to range in an interval say (-8,
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8,). This will clearly force the curvature of our curve to be bounded above by max-

imal curvature which we denote it by K_,, , i.e.,
1RO Ko = - &)
min

where

1

max

rm=K
is the radius of curvature corresponding to K., . But it can be shown that adding
the restriction(l) to the set ', Will not remove non-existence difficully, i.e. again there

exists A, B, ﬁif € R*® such that no path of minimal length exists. The idea of avergge

curvature provides a way to overcome the non-existence situation.

We first mention a classical lemma. The proof can found in [(1).

</

T ]

A [ ]

<l

Figure 2: Workspace with Obstacles

Lemma : Let
r={X{ :a<t< b,X{t) €ER, XM =1
If X(t) exists Vte(a, b) then

“i(t) H S—rl_’:) “X(tl)')‘((tz) l] Sr-l'tl'tzl thtzE[a,b](L)

So, define
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X(Sl X Sz ﬁ
Sg'Sz

to be the awrage cuuatre of the curve X(t) in the interval (S, S,) and

K := g

E(®) <! on (a,b) &= X()edn o (aNIXO 1 = 19t N

X(t) sotsfies the (L) Condiion Vt,, t, € (a,b).

We denote

c{n,A.uBvr) = X X:(0L) —R",

Xt = 1 vt € (0.L),
K& <r! on (0,L) and
X AXL) = B
X0 = wX@® = v}

Now it can be proved that in c(n A, 4 B, v § paths of minimal length necessarily exist.

Such a path is called r-geodesic. L.E.Dubins{1} has investigated analytically the types
of r-gedesics for n=2. His main result can be summarized in the following theorem.
Theorem : Every planar r-geodesic is necessarily a continously differentiable curve
which is either
1. an arc of a circle of radius r, followed by a line segment, followed by an arc

of a circle of radius r; (CLC)

2. a sequence of 3 arcs of circles of radi r; {(CCC)

3. a subpath of a path of type(l) or (2).

3. Shortest Path with Obstacles

This section is split into 2 parts namely 3.1) Finding the collision-free paths of the
vehicle with obstacles from one placement tp another placement and 3.2) Improving
the collision-free path into a minimal one between 2 placements. In 3.1) we provide
an algorithm for generating collision-free path by constructing a directed graph. In
3.2) We take this path and use LP tp make it a path of minimal length.

3.1 Collision-free path of the Robot car
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We restrict motion of the vehicle by constructing lanes(line segments) in the
workspace. This restriction can be justified 1) for safety reasons in pract_ice and 2)
that our analytical solution in the case of obstacle free environment consists of paths
along line segments and circular arcs. Due to these lanes it is obvious that whenever

the vehicle is moving on some lane then it is not colliding with any obstacle.

Following are some definitions

1. Sweep(r) :This denotes the region of the plane swept out by the vehicle as it
takes a circular arc denoted by Arg(r) (Figure 3). t is the turn from lane c¢; to

lane ¢, and z, and z, are start and end positions.

2. Minimum free radius : It is the minimal radius of a turn of circular arc such that
the vehicle is not colliding with any obstacle and also as close to the intersection
of theh lanes as possible so as to overshoot other intersections.

3. Critical radius : A radius r is said to be a critical radius for a turn t if ry <r<
Imey(t) and at least one of the following holds :

@ r = ry,

B T = Tau® |
(c) () is tangent to an obstacle wall ie. 3 O:qf) is tangent to W(O)
(d 3 O:4() is tangent to W(O)

(e) cor(0) € «(r)

(f) cor(0) € B.(r)

(g) cor(0) € r(n)

() cor(Q) € B(r) VO

() B,{r) is collinear with obstacle wall(W)
() cor(O) €EEr) V O

k) E.(r) is collinear with obstacle wall(W)
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Figure 3:Sweep and arc

Our goal now is to find the minimum free radius for each turn. In order to do
this we compute a set of “critical radi” for a turn t such that every radius r in
the open interval between two successive critical radii for t the statement “Sweep(r)
intersects the interior of no obstacie”.

Testing and finding free radii In order to compute the minimum free radius for a

turn t it is sufflcient to find the minimum free critical radius for t. To decide if a

radius r is free for t, first test to see if some obstacle is completely contained in
Sweep,(r) by choosing an interior point from each obstacle and checking if any of these
points are in the interior of Sweep(r) . If at leasi one of these points is in Sweep(r) then
r is not in not free for t. Otherwise no obstacle is completely contained in Sweep(r}

and so test if some obstacle partially overlaps Sweep,(r)

Building the graph G=(V.E)
A\

i

{t{=r, :1r is a free radius}

{e; : e's are lanes}

Main Algorithm

|
—
ox
w
|



1. Compute
T, = {t = (Co. ¢, do, d)}
where ¢, d, are the initial lane and initial direction.
2. Compute
Ty = {t = (c,cd, dy))
wher c;, d; are the final lane and final direction.
3. Search in the graph G for a directed path from any vertex in T, to any vertex
in T;. Some aspects of this idea have bveen already considered by G.T. Wilfong

2,3].

3.2 Deformation of a Path into a Shortest Path

Until now there are no practical solution and more detail example to solving this
problem, specially, Wilfong{2,3) had studied theoretical solution existence and
complexity. Here we try to find practical solution method by using given Wilfong idea

and LP form.
Our idea to find the shortest path is as follows:

The algorithm in the above section will give us ‘a collision-free path, say £ . This
path § is then deformed into a shortest path. Again we begin with some definitions
as below.

Definitions :

Feasible path: A path p is said to be feasible if all the minimum free radii

@) 2rg 1 = 1,2, 0.

Lengh A(p) : A(p) are the lengths of the portion on the lanes between 2 intersection

points of the lanes.

Equivalent paths: If p and q are 2 feasible paths with same mmal and final

placements respectively and T, = T (T,and T, ard sequence of turns t,t,, -, tx,

) then p and q are said tp be eguivalent.

We deform the path § by performing the following.
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1. Make q equivalent § . ie T, = Tg .
2. p should be feasible.
3. Make the minimum free radii for p, r;(p) €L; = (ay byl. qu is the family of free

intervals corresponding to turn t.

Then we will evaluate the length of p as follows:

k . k-1
length(p) = I6p) = 33 4~ (2-3) Lir@)
i= i=
As we have restructions on our radii, the problem now becomes a minimization
problem formulated below.
LP formulation
We formulated the LP problems and used GAMS for solving them. The program
listings and the results are attached.

Min I(p) = é&-(z——g—) ;‘jrri(p)

s.t. ri+ri+15/k+1

eVl
k)

4 EXAMPLE

We give in this section an example {(Figure 4 : Workspace including initial and final
position) which consists of several parts containing the main ideas discussed above.

Computing critical intervals for each turn:
t = (S|.Sz.dndz)
Notaions and Conventions :

1. M, : = intersection point of the lanes r and s.
2. *£i, *j for directions.
3. It can be shown that if

t=(S,, S, d,,d;) and t'=(S; S, -d, -d\) then
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V*© Arc (r) is collision free <= Arc,(r) is collision free, thus, critical intervals at
t and t° are equivalent.
At each intersection points M,s 3 8 turns. For simplicity we write critical intervals
only for 4 turns.
t; — tun in clockwise direction
t; — turn in anticlockwise direction
i =SS, didy) 2t =(S,,S,,-d,d)
Only the turns with free radii have been numbered below and drawn in the figure.
At M, t=0ajii), t; =(14-HL=013
At My, =, b, t,=01i0L=(016).L19
At M t=Lci-). t=(1i)L=(510).L=(19)
At M,y te=(1,4d,1L-DL=3.9U(79
At M,, t=(a.2,j1,t,=@2a 1] No free radius, I=(19
At My, t=1(b,2,7j,),te= 2. b,L,3), =2, b4 3. t,.:= (0,2, 1)
L=(110).,=(48).5,=(,10),1,=(5.8)
At My t,=(c,2,7j,-), t=(2, c.1,-)),t.=2, ¢, 4, j), tis=(c, 2.}, 1,)
=(L9,5hs=(6.9),L=(1,3)U6 9, Ls= (1,10
At My :te=(d.2,75,4), = 2,4, L -)1e= (1,9, L= (1, 10)
At My, :t=(,a,1i),ts=(3.2,4.j) No free radius, Is=(1,7)
At Mg, te=1(b,3,5,0),t= 3,1, ), L= (1.9, 1= (6.9
At M. 1 tn=(c, 3,5, ), t=3,¢, 1.}, 1n= 6 9, L= (1. 10
At Mgy *tey=1(d, 3,-j,-1), Ls= (1. 10)
In the example z, and d, are the initial point and direction and z; and d; are the

final point direction of the robot car.

The following are the sequences of turns for the above example :
1. (., t)

2. (tots t'on)

3. (i tet et i t’s)

4. Lttt it ot Lt st ie)
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5. (tite tie t uo t 2 t 1t 18t 1a)

5. Conclusion

In this paper, We present solution method and an example to find a feasible path
in the case of having obstacles. Until now there are no practical solution and more
detail example to solving above problem, therefore we have difficult to apply real
robot car operation. Here we formulate example problem LP form. LP formulation is
solved easily by usual package i.e. LINDO, GAMS etc. But we need to consider more

constraints real robot car, to sake application real fields.

REFERENCES

(1) Dubins, L. “On curves of minimal length with a constraint on Average Curvature
and with prescribed initial and final positions and tangents’, American Journal of
Mathematics 79, (1957)

(2} Wilfong, G. “Moiion Planning for an Aulonomous Vehicle,” IEEE In. Conf Robotics
and Automation(1988) . _

(3) Wilfong, G. “Shortest paths for Autonomous Vehicles”, IEEE In. Conf Robotics and
Automation(1989) .

- 149 -



ki 1a k4w bdic | Mu

g"{é 23 MZd

bdsa b 34

7 M M.

Figure 4 : Workspace including initial and final position
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