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Abstract

For situations where there are several markets for a product with different profit/ cost structures,

an economic variables sampling plan is developed for determining the market to ship the lots

to. It is assumed that the quality characteristic X is normally distributed with known variability

and unknown mean having a normal prior distribution. Profit models are constructed which involve

four profit/cost components ¢ profit from a conforming item, inspef:tion cost, replacement cost,

and cost from an accepted nonconforming item. Methods of finding optimal sampling plan are

presented and a numerical example is given.

1. Introduction

Traditionaily,
have largely been based upon statistical considera-
tions > for example, MIL—STD— 105D, Dodge—

Romig tables, eic. In recent years increased atten-

acceptance sampling schemes

tion has been devoted to acceptance sampling plans
based upon economical and/ or Bayesian considera-
tions. The design of such sampling plans requires
knowledge of the costs of using a given sampling
plan, and the specification of prior distribution re-

garding lot quality. Despite the difficulty of obtai-

ning information about costs and prior distribution,
acceptance sampling based on costs and prior dist-
ribution has gained much popularity, since the in-
corporation of costs and prior distribution into the
sampling design renders decision making objective
and precise. Since 1960 s, economic attributes ac-
ceptance sampling plans have been considered by
many authorss see, for example, Hald(1960),
Chiu(1974), Moskowitz, et al.(1979), Riew and
Bai(1984), Guenther(1985), Barad(1986),
Tagaras and Lee(1987). There has been, howe-

ver, relatively little work on the design of economic

and
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variables acceptance sampling plans. Ailor et al.
(1975) considered an economic sampling plan in
which the quality characteristic could be a mixture
of variables and attributes, Chapman et al. (1978)
developed an economic multivariate acceptance sa-
mpling plan. Schmidt et al. (1980) developed an
economic variables sampling plan based on three
decision alternatives : the lots are classified into
three quality grades A, B, and C where grade
A lots are accepted, grade B lots screened, and
grade C lots scraped. Lam(1988) considered an
economic variables sampling plan with a polynomial
loss function.

In this paper we consider the problem of desig-
ning variables sampling plan to grade the quality
of the products that can be sold to several markets
or used as components of several products with
different profit/cost structures. Many industrial
examples can be found ; an integrated circuit(IC)
can be used as a component of filters, amplifiers,
etc., and a relay as a component of tape recorders,
clocks, ete. In such situations. a nonconforming
IC or relay causes different costs of assembling/di-
sassembling and damage to other parts in the asse-
mbly. A conforming one may also vield different
profits. It is therefore important to determine the
product into which the IC’s or relays should be
assembled depending on their quality. The deci-
sion: for disposing the lot is then made based on
the quality of the lot estimated by sampling inspec-
tion: and the profit/cost structure. Economic attri-
butes sampling plans under similar situations were
considered by Bai and Hong(1990).

In a sampling inspection. a random sample X=
(Xis X5 -, X of size n is taken and the decision
for disposing the lot is made based on the sample
mean X=3X;/n. Methods are deveioned for deter-

mining the sample size n and the set of disposition
limits (8,, 855+ 8 for the markets that maximize
the expected profit. Bayesian approach is utilized
to define the optimal sampling plan.

The notfation and basic assumptions used in this

paper are as follows.

Notation
N = lot size
L = lower specification limit
n = sample size
& = disposition limit for market i, i=1,
2:,m
X = quality measurement
X = sample mean
Tl = mean of x
¢ = variance of x
Ay = profit from a conforming item for mar-

ket i, i=1,2,--"»m

Ci{x,L) = cost from an accepted nonconforming
item for market i, depending on the
quality deviation between x and L,
x<L, i=1,2,",m

S = unit inspection cost
D = unit replacement cost
f(x | p) = conditional distribution of x given p
h(1) = prior distribution of
g(X) = marginal distribution of ¥
t(x | ¥) = conditional distribution of x given X

€(p | %) = posterior distribution of y given ¥

$(+) = density function of the standard normal
distribution

$(-) = cumulative distribution function of the
standard normal distribution

Assumbtions
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i) There is a lower specification limit L.

i) The test of sampled item is nondestructive
and all nonconforming items found in the sa-
mple are replaced by conforming items.

iii) X is normally distributed with unknown
mean  and known variance o

iv) u is normally distributed with known mean

8 and known variance .

2. The model

Consider a product that can be sold to M diffe-
rent markets. When an zccepted lot is sold to mar-
ket i. a conforming item yields a profit of A; and
a nonconforming one causes a loss of Gilx, L}=
a{L—x)% depending quadratically on the quality
deviation between x and lower specification limit
L. A; may be equal to the difference between the
market price and production cost. The cost of acce-
pting a nonconforming item may include service
and replacement costs plus loss of geodwill. Now
consider markets i and j where A; > A; and Ci{x, L)
<Ci(x, L), or A=A and Cilx. L)<G(x, ). It is
easy to verify that market j is ‘dominated’ by mar-
ket i and thus a lot should be sold to market i
rather than market j if only these two markets are
under consideration. Therefore, we should consi-
der only the markets which are not dominated.
Assume that there are m wmarkets which are not
dominated. Without loss of generality. we assume
that A>A; and Ci{x, L)>Ci(x. L) for all i<{j. The
condition Ci(x,L)>>Ci(x, L) for all i<[j is equiva-
lent to the condition a~>a. If there are too many
nonconforming items in the lot, it may be unprofi-
table to ship the lot to an -ordinary market because
of the costs caused by accepted nonconforming

items. Therefore. we consider market m as an

alternative with one of the following modes : sell
the lot at a discount, screen the lot and sell confor-
ming items and scrap nonconforming items, or sc-
rap the lot.

The operating procedure for the sampling plan

is as follows -

i} Take a random sample of size n from the lot

a
and compute §=le;/ n.
=

i) Let & i=1,2,~,m, be real numbers such
that 8,28, 2> 2>8.= —© and &=w. If
§:<F<Bi-1. i=1,2, ", m, ship the lot to ma-
rket 1. If &=05:1, the lot is not shipped to
market i

In a sampling inspection, the expected profit per

lot will be composed of the following four compone-
nts.

1) Profit from conforming items in the accepled
tot

Since all nonconforming items found in the sam-

ple are replacéd by conforming items, the expected
mumber of conforming items in the accepted lot

given X becomes
nt+(N-n) - 2 [2f(x | &g | Ddx * dy
=n+(N—n) - [[ n{x)dx,

where n(x)=§"_f(x|w £(u %) dp is a normal
density function with mean :
pe= (0% + e}/ (e + 7)),  meeeeseeeeeeenen (2a)
and variance
0,2:{1+‘E2/(n‘t2+62)}0-2. (Zb)
Thus we obtain the expected profit for market
i given X as
A {IN—(N—n) - ¢8O},

where

fla
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2) Cost from nonconforming items in the accepted
lot
The expected cost from nonconforming items in

the accepted lot given X becomes

(N=n) - f7_f* GlxDf(x | ¢ | x)dx - dp
=(N-na - {* (L—xn(x) dx
=(N—nla - c{(Q1+&EE +Ep(O}. - (&)

3} Replacement cost
The expected number of nonconforming items
found in the sample depends upon the value of

%. We obtain the expected replacement cost given

X as
oD - futlx | BDdx=nD-g( X /1 3
[+1 n—1
- (8)

4) Inspection cost

The inspection cost is nS.

By summing formulas (3), {(4), (5), and the
inspection cost, we obtain the expected profit per

lot for market i when sample mean is X
EPin, 0 =A4;- {N—(N—n) - ${&)}
- (N—n)aw.*{ (1+E)$(5) +Ep(8) }

L—x v —2)—nS.

a n—1

~ nb(

Since a lot is shipped to market i whenever
5<X<8i-1» i=1,2,",m, the expected profit per
lot is given by
K@, 81,8, 8,) = =8+ 2 [i1k(n. v)g(y)dy,

PO (7)

where k{n,y)=EP{(n.y)-+nS and g(y) is the
normal density function with mean ® and varia-

nce (%4,
Il

3. Optimal sampling plan

The optimal sampling plan can be obtained by
maximizing formula {7) with respect to (n. 8. 52
"+, 8a). We first determine optimal disposition
limits &*=&"(n), i=1,2,**.m. for given n and
then determine n maximizing the expected profit.
For a given n, the expected profit is maximized
by choosing the values of 81, 82, **, 8. that maximize
the second term in formula (7). An upper bound
of the second term that we can- attain for a given
n is [*_{max k{n,y}g(y) dy. This value is clea-
tly attained Iby shipping the ot to market i whene-
ver X€[, i=1.2,*, m, where [ is the set of real
numbers X satisfving the inequalities k(n, 2>k
(0, %) for all j#i, simultaneously. Since k.{(n,%)
—k(n,® for all >>1 is an increasing function of
% for given n{see Appendix), it is clear that I,
is given by the interval I;=[8,*. ) where &," is
the smallest real number ¥ satisfying the inequali-
ties k:(n, £ >k(n, © for all >>1, simultaneously.
Similarly, if I, i=2,3,*,m, is not empty. it is
of the form L=[8;*,8;-,*] where &"* is the smallest
real number X satisfying the inequalities k(n, )
>k{n, %) for all j¥i, simultaneously. If 1 is em-
pty, we let &% =8-,*. The values (8,".8.".--,
8.") then satisfy the inequalities §,*2>8," > >
8a" = —o. These inequalities imply that the deci-
sion of which market to ship the lot to is of the
ordered type. That is, the larger the sample mean
X, the lower is the index of the market to which
the lot is shipped to.

Since ki(n. © —k(n, %) for all i<j is an increa-
sing function of ¥, the range of X such that k{n, )
>kl is
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[iZY;j, for i<},
<y for i,
where y; is the real number satisfying the equation
ki(n, %) =k{n, ©. The value of y; is obtained by

gm0+ Lokt 8 (@)
nt nt?

where & is the value of & satisfying the equa-
tion
Q+14+8) - @O +E - 0@ =Nt/(N—n), - (1)

where

In formula (10) it is seen that &" is an implicit
function of only two variables. namely, r and_N/
{N—n). Search algorithms such as Newton-Rap-
son or bisection methods can be used for finding
&*. For each i=1,2,*»m, we determine &*=
&"(n) as the smallest real number satisfying the
inequalities (8), simultaneously. After (5,%,5:
¥, 8a") for a given n are determined, the opti-
mal vatues {n*,5:",8*,,8.") can be found by
evaluating the expected profit function for each va-
lue of n with the corresponding disposition limits,
(8:%,82*, ", 5" ). An upper bound for sample size
n is obtained by the expected value of perfect infor-
mation{EVPI) divided by S. EVPI is the expected
profit with perfect information about the lot quality
minus the expected profit for the optimal disposi-

tion of the lot without sampling. That is

EVPI=[%_ {mziixKa(N,L P wih(uwidu
—max 7 KO, L | wh{pdu.

where
KN.LIw=N-{AFix] pdx
—J* Gl Df(x | wdx,

which is the profit when a lot with mean p is ship-
ped to market 1 without inspection.

We used quadratic cost function as the form of
Ci(x,L). We can also consider other forms of Ci(x,
L) ; for instance, a fixed cost function Ci(x,L)
=, or a linear cost function Ci(x, L) =c(L—x).
For fixed and linear cost functions, the value of
y; is obtained by formula(9) with &" replaced by
&" and &*, respectively., where &* and &" are
the values of £ satisfying the equations

N(A—AD

Q(a = y TRTTTTRS (113)
(N— ) {A+b—A—h)

and

(s+8) - O+ =Ng/(N—n), - (111

respectively, where s={A—A)/{(c—¢) - aul.

4. A numerical example

Consider an integrated circuit (IC) that canfun-
ction accurately if the input impedance X is greater
than or equal to 9.0 M. It can be used as a
component of a filter or an amplifier. The costs
of identifying a nonconforming IC and assemb-
ling/ disassembling are different. A conforming one
also yields different profits. Based on past experie-
nces, it is known that a quadratic cost function
is an appropriate one. Profits and acceptance costs

in dollars are as follows.

Amplifier Filter Discount
Profit(A) i.8 1.6 0.2
Acceptance cost(a;) 13.0 7.0 0.9

Lot size, inspection cost and replacement cost are
1000, 1.0, and 4.0, respectively. Inspection his-
tory shows that X is N(p, 1.5%, and p is N(11,

0.5%. Using these values, we obtain the optimal
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sampling plan (n*.8,*,8,")=(31, 11.71, 10.37).
Hence IC's are used as amplifier components if
11, 71<%<Ceo , as filter components if 10. 37<5%<
11.71, and sold at a discount otherwise. In this
case the expected profit is 782.79.

To study the effects of using a wrong form of
Ci(x,L), the optimal sampling plans for the fixed
and linear cost functions are obtained. The cost
coefficients are selected so that the expected profits
when a lot is shipped to market i without inspec-
tion, K{N,L), are exactly the same for the three

forms of Ci{x,L), where

K(N,L)=JZ_K{N,L | wh{p)dn

=N{A— &+ b9}, (fixed)
=NA—{Atcy/ ez a2
~c/ o+ o(z)], {linear)

=N[A~{A+alc®*+ D (1+2D1$(2)

—alo*t )z $(D], (quadratic)

and
L-8
2= ..

e

In this example, b;=12.92, t,=6.96, by;=0.00,
and c,=17.16, ©=9.24, ¢=0.00, Using these
cost coefficients, we obtain the optimal sampling
plan (n*,8,%,8,*) = (22, 12.12, 10.22) with expe-
cted profit 736.30 for the fixed cost function, and
(n*,8*,8,"}=(27, 11.87, 10.33) with expected
profit 759.87 for the linear one. In this example
there is no significant difference in the optimal sa-
mpling plans. This is, however. not always true.
The optimal sampling plans and the percentage er-
rors (PE) of the expected profit due to misuse

Table 1. Optimal Sampling Plans and Percentage Errors with Wrong Cost Functions

' Optimal Sampling Plans PE for cost function used {%)l
|
| P e o’ T True Cost * * *
| Fuiction (a* &% &%) fixed linear quadratic
| fixed (18, 11.53, 9.80) 0.6 0.4 0.2
i 10.8  1.72  0.25 | linear (22, 11.31, 9.95) 0.3 0.0 0.1
| 0.10 quadratic | (25, 11.20,10.02) 1.0 0.2 0.0
) fixed (22, 12.12,10.22) 0.0 0.3 0.8
i l 11,0 225 0.25 1 linear (27, 11.87,10.33) 0.3 0.0 0.1
| ; quadratic | (31, 11.71,10.37) 0.9 0.1 0.0
' fixed | (27, 12.61,10.88) 0.0 0.8 3.1
; 0.8 2.82 0.40 | linear (30, 12.28,10.79} 0.8 0.0 0.6
i 0.15 quadratic | {33, 12.05,10.72) 2.4 Q0.5 0.0
‘ | fixed {25, 12.25,11.35) 0.0 2.0 8.3
; | 110 324 0,49 | linear (29, 12.84,11.20) 1.7 0.0 1.0
. quadratic | (32, 12.56,11.10) 4.7 0.9 0.0
fixed {17, 13.59,11.88) 0.0 8.7 29.5
10.8  3.42  1.21 i linear {21, 13.03,11.50) 5.8 0.0 4.1
0.20 quadratic | (24, 12.85,11.26) 14.5 3.2 0.0
| fixed | (16, 14.23,12.36) 0.0 10.0 34.4
{110 412 1.44 | tinear | (20, 13.60,11.93) B.4 0.0 4.9
; | quadratic ! (23, 13.17,11.65) 16.1 3.5 0.0
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of the cost function are given in Table 1 for selected
combinations of 8, o, and t* with the remaining
parameters fixed. The parameters 8, ¢° and T
and chosen so that the process average p=P{X
<L)y =¢{(L-8)/(c*+DY} is 0.10, 0.15, and
0.20. PE is expressed as

_ EP"—EF

EP*

PE X100( %7,
where EP* and EP’ are the expected profits by
using the correct cost function and a wrong cost
. function, respectively. Table 1 shows that, for la-
rge process averages, using the correct cost func-
tion is important in implementing a sampling plan.
The profit decrease is as high as 34.5% for process
average (.20.

5. Concluding remarks

We have developed an economic variables samp-
ling plan for grading the quality of the products
that can be sold to several markets or used as com-
ponents of several products with different profit/
cost structures. The profit/cost components consi-
dered in the model are profit from a conforming
item, inspection cost, replacement cost, and cost
from an accepted nonconforming item which is a
function of the deviation of x from L. Three forms
of cost functions—fixed, linear, and quadratic—
are considered. Empirical results show that, for
large process averages, a correct use of cost func-
tion is important in designing a sampling plan.

Profit models are constructed under the assmp-
tion that all nonconforming items found in the sam-
ple are replaced by conforming items. The models
can easily be modified to accomodate other modes

of disposing the sampled items ; for instance, alt

sampled items may be put back to the lot or nonco-
nforming items found in the sample may be elimi-
nated. The models can also be extended to the

products where there are both lower and upper

specification limits. It is sometimes difficult to ob-
tain accurate profit and cost information and it will
be of interest to study how sensitive this mode]

is to the changes of profit/cost factors.
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APPENDIX

Proof that ki(n, y) ~k(n,y) for i<jj is an increa-
sing fonction of x for given n
kin, y) —kin, y) =(A—Ap ~ {IN-(N—n) - ${O}
—(N—n) (a—a) . { (1+E) (&)
+&- oD},
from which we obtain
2 (k. —k(n. Y} =(N-n)RI(A—A)

oy
- (&) +2(a—a) ol o)

+§Lp(é)}]’ .............................. (Al)
where
R=Lra+ Lo T 1o
G ot nt

Since ¢(O+&+ O =/ (L-©n(xdx/ a,>0,
AZ> A, and a>y for i<, formula (A1 is positive
and therefore ki{n,y) —k{n.y) is an increasing fu-

nction of y for given n.
Q.E.D.



