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Abstract

This article develops a control model for an open queueing network in terms of both the input

and the output processes with stochastic intensities. The input and the output intensities are

subject to some capacity limits and optimum control is characterized by a threshold type with

a finite upper barrier. A discounted profit is used as a decision criteria, which is revenue minus

operating and holding cost.

1. Introduction

The threshold type control is widely applied in

practice. As an illustrative example, consider a

production system. The input process is characte-

rized by the output process of an upstream stage
that feeds semi-products into the system and the
output process models the production of the sys-
tem. If the number of jobs in the system reaches
the upper limits of the job population, the arriving
job is blocked and is either assumed to proceed

to a different production system or simply be tur-

ned off. Also the number of jobs in the system
reaches the lower limit, the production of the sys-
tem is temporarily suspended and the output pro-
cess is turned off. And the number of jobs in the
system is between the lower and the upper limits,
then both the input and the output processes run
at their maximum allowed capacity limits. This
blocking type of control is characterized by the th-
reshold control.

This article develops a control mode! for an open
queueing network in terms of both the input and

the output processes with stochastic intensities.
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The input and the output intensities are subject
to some capacity limits and the optimum control
is characterized by a threshold type  the input in-
tensity drops to zero whenever the job population
level reaches the upper harrier, otherwise both
the input and the output go at their full capacity
limits, that is, the lower contrcl limit is zero.

As related work. Robertazzi and Lazar(1985)
studied the control of the input process in Jackson
(1963} network. The objective is the maximization
of the averaye throughput of the network subject
to a bounded sverage time delay and they showed
that there exists an optimal control of the threshold
type. Li{ 1988} studied both the input and the out-
put control problem in a simple queueing system
where the input and the output processes are con-
ditional poisson. The optimality of the threshold
type control was established under the condition
of the constant capacity limits on the birth-death
rates. The objective was the maximization of the
long-run total discounted profit, which is the reve-
nue minus the sum of the operating cost and the
holding cost. In Chen and Yao(1990), the results
are more genieral and specific. They extended Li
{1988} s result by allowing the input and the out-
put processes to be general point processes with
their stochastic intensities and state-dependent ca-
pacity limits. And they established conditions and
restrictions on the capacity limits for the existence
of the optimal and finite threshold.

In this work, we provide theoretical justification
for the existence of the optimal threshold control
for an open queueing network. A discounted profit
is used as a decision criteria. which is revenue
minus operating and holding cost.

In section 2. we start with the formulation of

an intensity control poblem in an open gueueing

network. In section 3, we focus on a single-stage
queueing system and characterize the conditions
for the existence of the optimal threshold control,
which will serve as a prelude to the main results
in section 4. In section 4, we establish the existe-
nce of an optimal threshold control and identify
a finite optimal upper barrier b* in open queueing
networks. Finally, Section 5 concludes the paper

with some brief remarks.

2. Model Formulation

Consider an open queueing network(OQN)
where the input and the output processes are gene-
ral point processes with their stochastic intensities
and state-dependent capacity limits. There are M
stations(%t=1{1, -, M}) with first-come-first-ser-
ved queue discipline in the network. For each node
in the OQN, define the queue length at node ¢,
n; (i=). as the number of jobs in it (including
both jobs in gueue and jobs in service). Let the
state of the system be the number of jobs in the
network(N), which is the sum of the queue lengths
at nodes, i. e.. N={n) =X 2, n. External arrivai
follows a poisson process with the state-dependent
arrival rates. A(NY{(N=0, 1, 2, ---). The arrival
rate is controllable and satisfies the restrictions,
l(N)g‘AL(N) (N=0. 1. 2, ), where A{N) repre-
sents the given state-dependent capacity limits on
the arrival rates at the system.

An arrived job will first join station f with probai-
lity y(j=1. -, M). Any job after being processed
at station ¢ will leave the system with probability
volici). Job routing within the system is gover-
ned by the transition matrix [y;] (=, jeuo)

which is sub-stochastic. The traffic equations are
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t=vo+tE ¥ oy; G U, and »:G=U) can be
"interpreted as the average number of visits to sta-
tion 1.

For each node, the service rates are conditional
poisson, Let pi(n) be the service rate given that
the queue length is n:; let u(0) =0 (G ew). For
ni>0, the service rates satisfy : O<u (n:) <fu(n.)
(fe and n=1, 2, ), where §{n) is given
upper limit (positive and finite) on the service rates
at node i. That is, the service rates at each node
is controllable in a decentralized manner. Assume

" that all nodes have ample waiting room, so that
no job will be hlocked at any node. And a control
v is said to be admissible, when the service rates
satisfy * O<u () <iu(n) Gew and =1, 2, )
and the arxival rates satisfy I 0<A(N) <& (N) (N=
0, 1, 2, ).

Let N(){t>0) be the state of a network at time
t, taking values on non-negative integers, A(t)
(t>0) be the cumuiative number of arrivals into

the network in L0, t] and D(){t>0) be the cumu-
lative number of departures (throughputs) from

the network in [0, t], where both A{t} and D(t)
are represented by the increasing nonnegative in-

tegers in t. Then
ND=NO) + A0 —D(D) ~ervemmeees (2, 1)

where N(0)>0 is the initial state.

Let p be the revenue due to output, ¢ be the
operating cost for input, and h be the holding work-
in-process inventory cost for an unit. Then the
objective is to maximize the following discounted
value function given a control ¢

V=E! [, ¢ (pd D () —cdA() —BN(DdD)
where E.” denotes the conditional expectation un-

der control v given N(0)=x, and y>0 is the dis-

counted factor.
Substituting equation(2, 1) and integrating by
parts the equation (2, 2) simplifies to
V@ =E [ e [pd D () —edAW®]—he/y
................................................ (2. 3)
where p=p+h/r and ¢=c+h/r.

A control #* is optimal if V"*(x)>V*(x) for all
admissible control # and for every initial state x.
The focus of this paper is to show the existence

of such an optimal control.

3. Optimal Threshold Control in a
Queveing System

From the definition of stochastic intensities
(Brémaud 1980). let N(t) be the state of a
queueing system at time t and 3“be the internal
history generated by N(t). Suppose A(t) and D(t)
admit SM-intensities a» and B respectively.
Then

0<aich (N(1)), O<Bigin (N(D)) -reveers (3. 1)

And for any non-negative 9;"-predictable process
Ct,

E<Js C.dAD=E, [ Caut,

Ex jgw Cg dD(t):E; f():o Cepdt. =reereemeer (3‘ 2)

Consider a single-stage queueing system, in
which the arrival and the departure processes are
modelled as point processes with stochastic intensi-

ties with the arrival intensity o and the departure
intensity Bi. Then the objective to be maximized

is -
E. |, ¢ (PP )dt—ha/r. +ooeemeees (3. )

For a given non-negative integer b, let
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M(N)=AN), if Ngb—1,
0, if N>b.
w(NY=np(N), for N>0,

then the threshold control 8={(a, B, t>01} is
defined by

o =M(N()) and B=g (N )}, - (3. 5

where the integer b will be referred to as the upper
barrier of the threshold control @. The value func-
tion under the threshold control 8 will be denoted
by o

Then the following conclusion is derived in chen
and Yao{1990).

Theorem 1: If the capacity limit A(N) is non-
increasing, the capacity 1{N) is non-decreasing
and concave. and i{c0)<w, then there exists an
optimal threshold control with a finite upper bar-

rier #* where b is the value of & which satisfies.

And the optimal upper barrier b” obtained is inde-
pendent of the initial stat x.

Indeed, in the context of production systems,
as the worl-in-process ievel increases, the arrival
process often slows down and eventually drops to
zero, while the departure process gets faster but
gradually flattens out.

Therefore, the optimal threshold control in a
general queueing system with the above conditions
can be summarized as follows i the state is N{t)
<b*, then the input and the output are at full
blasts. and if the state N(t) reaches the upper
barrier b*, the input intensity drops to zerc while
the output intensity is still at its full blast. And
if the initial state [0, b*], then N(O) =[0, b*]J
for any t>0, And the optimal threshold b® is the

value which satisfies equation(3, 6).

4. Optimal Threshold Conirol in a
Generalized Jackson Network

The queueing network introduced in section 2
is known to have the following product form equili-

brium distribution :

PG=n)=PGa=0" [[.2)' AW][]¥ R

where
Fi(?ﬁi) = E’;‘ml 1_[;:1 U}L(k) -

Many conditions can be altered without changing
the product-form result (Kelly 1979), which is es-

sentially what we need for the main result in this

paper.

Let A(NY =0 if N>L, and A(N) = otherwise,

where L is a predetermined number. such that
Flite A(N)=0 for all K>L. This asymptotic spe- '
cial case of the generalized Jackson model (1963)
is the closed queueing network (CQN) model of
Gorden and Newell(1967), where the total number
of jobs within the network remains constant. This
can be interpreted as maintaining a fixed number
of jobs within the network.

Therefore. the state space, &, in CQN beco-

mes

&={neZMn| =N, oo (402)

where z." denotes the M-vector whose compo-
nents are non-negative integers 5 | n | =X, x.
And the product-form equilibrium distribution is:
PGa=m)=G'(N) [[.3 Fla) - (403)

where
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Fi(ﬂ{) = 3’;“-“‘ Ha-:i; /}L(k)
GN)=Z% H.‘f + Fi(n)

H|=N

The throughput function of the CQN is known
to be:

TH(N)=G(N—1)/G{N) e ERRPLTER (4. 4)

Another special case of the Jackson model is the
open queueing network with finite buffer capacity
(OQNF) where A(N)=0 if N>L. That is. whene-
ver the total number of jobs within the network
reaches this threshold (L), arriving jobs are bloc-
ked from eniry and lost. and L can be interpreted
as buffer {imit.

Index two CQNs by the superscripts 1 and 2,
where only the service rates are differ each other,
while all other things being the same. Then the
following lemmas are of interest.

Lemma 1 Assume that the service rate y{n,)
is nondecreasing function as a function of the local
quene length #;. If the service rates of a station
are increased, that is 1" (n) > 0™ (n) (=1, -,
NJ). for a given N, the throughput function of a
CQN, TH(N), is also increased, that is TH*(N)
STHP(N).

Proof - The proof is given in Shanthikumar and
Yao(1986). It was verified through the concept of
“equilibrium rate,” associated with the probability
mass function of a discrete random variable. When
there are multiple parallel servers with fixed ser-
vice rate per server. the second order property
“with respect to the number of servers at a station
“can also be proved by comparing the sample paths
*of the service completion processes (Shanthikumar
‘and Yao 1987).

Lemma 2 : If the service rate wix:) is nondec-

‘reasing concave (convex) function as a function

of n:» the CQN throughput, TH(N), has also the
same property as a function of the job population
N.

Proof © The proof is due to Shanthikumar and
Yao(1988), and is also based on the equilibrium
rate representation of the throughput. And the
non-decreasing properties and the second-order
properties of equilibrium rates are shown to be
preserved under convolution.

Note that the above lemma implies that for all
CQNs with multiple parallel-server stations (inclu-
ding single servel stations), TH(N) is increasing
and concave, since in this case w(n) =y’ * min
(n» CJ is increasing and concave in #: where
is the constant service rate per server at station
i and C(3>1) is the number of servers there. On
the other hand, if all stations are infinite server
stations (i. e., C>N for all i}, then w(n) =ng
is a linear function and hence the linearity of TH
(N) from above.

For a given nonnegative integer, b, let

W(N)= {X(N), if Ngp-l
0 , if Nxb,
wWNY =1 (w2 for nip1(i=1, - » M),

then the threshold control in a general queueing
network #={{a,, B.). t>0} is again defined by

a=»(N(t}) and B=TH (NQ)) - {4, 6)

where TH? denote the throughput of the network
given € with service rates (i (n(t))).Y; , where
T a0 =N{).

Then the main result of the paper is the follo-
wing.

Theorem 2 © If the capacity limit A(N) is non-
increasing, the capacity limits. [i{n) (€20, is
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non-decreasing and concave, and {L{w)<w(ie
). then there exists an optimal threshold control
with a finite upper barier * where §* is the value

of b which satisfies

*=minf . VIG+D - VD) <l <o

And the independency of the optimal upper bar-
rier & of the initial staie x is still preserved.

Proof - Construct a CQN with M+1 stations
which consists of two subsets of stations. A subset,
ity consist of M stations, {1. -, M}, which are
the stations of the original GQN and the other sub-
set, 3. consists of a fictitious station which corres-
ponds to the outside of the original OQN. Refer
this station as station 0 and 5={0}, Let G=8+u.
Assume for 2 moment that the total number of jobs
in this constructed CQN equals to N* and these
jobs cvcle between station O and the other subnet-
work for services. Therefore when N jobs are in
the subnetwork. the number of jobs at station 0
equals N*—N and the output rate from station 0
equals to A(N) which corresponds to the arrival
rate to the original OQN. And hence, when all
N* jobs are in the sub-network, the output rate
from station G drops to zero and the service rate
Ay k=0, 1,

Henée, by using the subsecripts %, B. and &

-+, N"J is non-decreasing.

to denote. respectively, any quantities related with
the sub-network ¢, B and CQN &, the marginal
equilibrium distribution of the number of jobs in
the sub-network ¢ with the total population being
N equal to -

P(12.=N)

= Gy(N*=N) G.{N)/G.(N")

=A(N—DG(N*—N+1) G.(N—1)/TH.(N)
#G,(N")

=P(lanl..=N-1) - A(N—1/TH.(N).

............................................. (4. 8)
where
GeN*—N)=VTsY Al =aN—1)
*Gy(N*—N+1)
and G.(N)=G.(N—L)/TH.(N).
Therefore the following is obvious :
AN=DP( [ # | ,=N~1
=TH.(N)P(i 2 | o=N). e (4, 9)

Assume N* converges to infinity, then the sub-
network it remains the same as the original QQN
and the station O corresponds to the outside of the
OQN. And equation (4. 10) leads to the detailed
balance conditions of the random variable represe-
nting the equilibrium number of jobs in a birth-
death queue with state-dependent birth rate A(N)
and death rate TH«{N). Therefore. the original
OQN gives rise to the same behavior as a single
birth-death queue in Theorem 1 with N being a
state variable. The required non-decreasing and
concave properties of TH(N)} are obvious through
Lemma 1 and Lemma 2.

Theorem 2 can be readily adapted to a system
of OQNF. In this case we assume that the input
capacity limit A(N)=0 for N>L and the initial
work-in-process inventory x=N(0)=[0, L]. Then
the optimal control is also threshoid type and the
result is summarized in the following thecrem.

Theorem 3 - Under the same assumptions as in
Theorem 1, the optimal control for OQNF is a thre-

shold control, and its optimal barrier is
b* =minfp<L—11 V*H(p+1) - V(B <

and if no such " exists then #°=L.

Proof - From the proof of Theorem 2, OQN be-
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haves as a single birth-death queue. Then the proof
of Theorem 7. 1 in Chen and Yao (1990) is easily
extended.

5. Conclusion

Open Queueing network proves to be effective
tools in the design and control of production sys-
tems and the threshold control mechanism prevails
in a wide range of production systems. This paper
characterizes the conditions and the form of an
optimal threshold contrel in terms of both the input
and the output processes in an open queueing net-
work. Though it doesn’t necessarily provide an
algorithmn {o efficiently compute the optimal thre-
shold, the result derived here in a very general
conditions is very constructive one from a theoreti-

cal point of view.
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