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L>-TRANSVERSE HARMONIC FIELDS ON
COMPLETE FOLIATED RIEMANNIAN
MANIFOLDS*

Jin Suk Pak and Hwal-Lan Yoo

We discuss transverse harmonic vector fields with finite global norms
on complete foliated Riemannian manifolds. Our main method is the cut-
off function trick.

0. On a compact foliated Riemannian manifolds, geometric transverse
fields, that is, transverse Killing, affine, projective, conformal fields have
been studied by Kamber and Tondeur([4]), Molino([8]), Pak and Yorozu([10]),
Park and Yorozu([12]) and others. In the case of foliations by points, trans-
verse fields are usual fields on Riemannian manifolds. In [11] we considered
the transverse harmonic fields on compact foliated Riemannian manifolds
and obtained natural extension to well-known results for harmonic fields
on Riemannian manifolds. Our main purpose is to study transverse har-
monic fields on complete (non-compact) foliated Riemannian manifolds.
To do this, we have to mention the notion of “L2-transverse fields” that
is, transverse fields with finite global norms. L2-transverse Killing and
conformal fields are already dealt in [1] and [21]. In this paper, we discuss
L*-transverse harmonic fields on complete foliated Riemannian manifolds
such that the foliation is minimal and the metric is bundle-like with re-
spect to the foliation, and then the following theorems are proved:

Theorem A. Let (M, gy, F') be a Riemannian manifold with a minimal
foliation F and a complete bundle-like metric gps with respect to F'. Let
s € V(F) be an L?-transverse field of I'. Then s is a transverse harmonic
field of F' if and only if Ap(s)+ pp(s) = 0, where pp(s) is the transverse
Ricci operator of F' and Ap(s) is the Laplacian acting on Q" (M, Q).
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Theorem B. Let (M, gp, F') be as Theorem A. If the transverse Ricci
operator pp is non-negative every where in M, then every L2-transverse
harmonic field is D-parallel. If pp is non-negative everywhere and positive
for at least one point of M, then any L*-transverse harmonic field other
than zero does not exist in M.

We shall be in C'*°-category and deal only with connected and oriented
manifolds without boundary. We use the following convention on the range
of indices:

1<4,5<piptl1<abecd<p+yq.

The Einstein summation convention will be used with respect to those
systems of indices.

1. Let (M,gm, F) be a (p + ¢)-dimensional Riemannian manifold with
a foliation F' of codimension g and a complete bundle-like metric gar with
respect to F([14]). We assume that F' is an oriented foliation([15]). Let
V be the Levi-Civita connection with respect to gas. Then the tangent
bundle 7'M over M has an integrable subbundle £ which is given by F'
The normal bundle @ of F is defined by Q@ = TM/E. We have a splitting

o of the exact sequence

0—E—TM  Q—0

where o(Q) is the orthogonal complement bundle E+ of E in TM([3]).
Then gpr induces a metric gg on @Q:

(11) gQ(S,t) :gn{(U(S),U(t)), s,te F(Q))

where I'(x) denotes the set of all sections of *. In a flat chart U(z*, z*) with
respect to F'([14]), a local frame {X;, X,} = {9/d2",0/0z* — A20/dz’} is
called the basic adapted frame to F ([8], [13], [L6]). Here Al are functions
on U with gap(X;, X,) = 0. It is clear that {X;} (resp. {X,.}) spans
I(E|y) (resp. T(E*|r)). We omit “|;” for simplicity. We set

(1.2) 9ii = gm(Xis Xj)y g = gm(Xa, X3)
(¢7) = (9:)7", (9") = (ga)™"
A connection D in () is defined by

(1.3) Dxs = =([X,Y]),X €T(E), sel(Q)withx(Y)=s
Dxs = w(VxY,),X e (EY), seTl(Q) with Y; = o(s)
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([3]). Then the connection D in @ is torsion-free and metrical with respect
to gg ([3]). The curvature Rp of D is defined by

(1.4) RD(X, Y)S - DnyS = DnyS = D[x’y]s

for any X,Y € ['(TM) and s € T(Q). Since i(X)Rp = 0 for any X €
['(E)([3]), we can define the Ricci operator pp : ['(Q) — I'(Q) of E by

(1.5) pp(s) = 9" Rp(o(s), 7(Xa))m(Xs)

([4]).
Let V(F') be the space of all vector fields Y on M satisfying

(1.6) [Y,Z] € T'(E)

for any Z € I'(E). An element of V(F) is called an infinitesimal automor-
phism of F' ([4],[9]). We set

(1.7) V(F)={se(Q)|s==(Y),Y € V(F)}
The s € V(F) satisfies
(1.8) Dxs=0

for any X € I'(E) ([4], [9]).
Let AT(M) be the space of all r-forms on M. We have the decomposi-
tions of A"(M) and the exterior derivative d with respect to F":

(1.9) N(M)= 3 A#(M),
wHz=r
(1.10) d=d +d"+d"

([5], [14], [16], [18]). Let A"(M) be a subspace of A®"(M) composed of
d'-closed (o, r)-forms, that is, the space of all basic (o, r)-forms on M ([5],
(14]). An operator § : A"(M) — A™"1(M) is defined by

e (_1)(p+q)(r+1)+1 % die

where * denotes the Hodge star operator. Then § has a decomposition :
= &'+ 8" + 6". The operator 6" is defined by

5" = (_1)(p+q)(r+l)+1 % d"*
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on A"(M) ([16], [18]). Let Aj(M) be the subspace of A™(M) composed
of forms with compact supports. Then the pre-Hilbert metric < , > on
AJ(M) is defined by

<<¢,¢>>=/M¢A*w

Let Q"(M,Q) (resp. Q5(M,Q)) be the space of all Q-valued r-forms
(resp. @-valued r-forms with compact support) on M. On Qj(M, @), we
may introduce a global scalar product <, >.by

< tu>= jM go(t A *u)

Let I'g(@) be the space of all sections of @) with compact supports and
let L*(Q) be the completion of I'y(Q) with respect to the global scalar
product <, >.

Definition 1.1 ([19],[22]). An element s € L*Q) N T'(Q) is called an
L*-transversefield of F'.

Definition 1.2 ([23]). An operator divp : ['(Q) — C*°(M) defined by
divpt = g“ng(D_xat,ﬂ'(Xb)) is called the transverse divergence with re-
spect to D.

Definition 1.3 ([23]). The transverse gradient gradpf of a function f
with respect to D is defined by gradp f = ¢** X, (f)r(X,)

2. The transverse Lie derivative ©(Y) with respect to ¥ € V(F) is
defined by
(2.1) O(Y)s = n([Y,Y;])

for any s € I'(Q) with 7(Y}) = s.
For Y € V(F), the operator Ap(Y) : ['(Q) — [(Q) is defined by

(2.2) Ap(Y)t = O(Y)t — Dyt

Then we have
(2.3) Ap(Y)t = —Dy,x(Y)

where ¢t = 7(Y;). This shows that

(1) Ap(Y') depends only on s = n(Y').

(ii)) Ap(Y') is a linear operator of I'(Q).
Thus we can use Ap(s) instead of Ap(Y') ([4]).

Let dp : Q"(M,Q) — QU+t (M,Q) be the exterior differential operator
and the d*D : Q(M,Q) — Q" (M, Q) be defined ([3]).
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The Laplacian Ap acting on Q'(M,Q) is defined by
(2.4) Ap = dDdI) + d;)dp

An element of I'(Q) is regarded as an element of Q°(M, Q).
The bundle map = : TM — @ is an element of Q'(M,Q). The Q-
valued bilinear form @ on M is defined by

(2.5) a(X,Y) = —(Dxm)(Y)

for any X,Y € I'(TM) ([3]). Since a(X,Y) = n(VxY) for any X,Y €
['(E), a is called the second fundemental form of F' ([3]).
The tension field T of F is defined by

(2.6) T = g% a(X;, X;)

([3]). We remark that r = dp7m € ['(Q).

The foliation F' is said to be minimal if 7 = 0.

Let zq be a fixed point of M and p(z) the geodesic distance from z,
toz e M.

We set
(2.7) B(2k) = {z € M|p(z) < 2k}

for any k > 0. We consider a function g on R which satisfies the following
properties:
0<pu(y)<lon R

ply) =1lfory <1
w(y) =0 fory > 2.

We define a family {w} of Lipschitz continuous functions on M:

wk(x):p(p(:c)/k), k= 1!2a'“
for any x € M. Then the family {w;} has the following properties:

0 <w(r)<1foranyz € M

supp wr C B(2k)

(2.8) wg(z) = 1 for any x € B(2k)
firy =

|dwy| < Ck™! almost everywhere on M
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where C' is a positive constant independent of k ([5], [18], [19], [20]). We
remark that, for any s € L?(Q) N V(F),wis — s as k — oo in the strong
sense.

We now introduce some lemmas for later use.

Lemma 2.1 ([22]). For any s € V(F), it holds that

l|d"wi ® sllary < C*k2||sl|Bar)

Lemma 2.2 ([1]). If F' is minimal, then
. 2 .
-/B(ﬂc) divp(wis)dM =0

for any s € V(F).
Moreover, for any s € V(F), we have

(2.9) divp((divps)wis) = 2go((wrdivps)s,gradpwy)
+go(w}s, gradpdivps) + (widivps)?

(2.10) go(gradpdivpt,t) = o(t)(divpt)
(1], [23])-
By the direct calculation, we obtain
(2.11) dz'uD(AD(s)(wis)) = 2wkgq(D,,(,),gradDwk)

-I-‘w:diUD(Da(,)S)
By means of Lemma 2.2 and (2.9)-(2.11), we have
Lemma 2.3. If F' is minimal, then it holds that

_/B{Zk)[wz{Rz'c(s) + Tr(Ap(s)Ap(s)) — (divps)?}
+2wigQ(Do(s)s — (divps), gradpwy)]dS = 0

for any s € V(F), where Ricp(s) = go(pp(s),s) and dS denotes the
volume element of B(2k).

3. Let "Ap(s) be the transpose of Ap(s), that is, ‘Ap(s) satisfies the
following equality:

9q(Ap(s)t,u) = go(t,'Ap(s)u)
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for any t,u € I'(Q).
For s € V(F), let Bp(s) : I'(Q) — I'(Q) be an operator defined by

(31) BD(S) == AD(S) = tAD(S)
([11]). The operator Bp(s) is skew-symmetric, that is,
(3:2) 9o(Bp(s)t,u) = —gq(t, Bp(s)u)

for any t,u € T'(Q). Therefore, T,(Bp(s)) = 0.
On the other hand, by the direct calculation, we get

T.((Bp(s))*) = 2Tr(Ap(s)Ap(s)) — 2Tr(*Ap(s)Ap(s)),

which together with Lemma 2.3 and the equality:

fH oy AT (AD(5) Ap($))dS =< 0, Ds, wiDs > pae

1

(33) 9 [B(zk;{T?‘(wﬁtBD(s)BD(s)) + (widivps)®}dS

&

- B(zk}{’wng(PD(S) -+ AD(s),_s) - %(U)kdivps)z

—2(wrdivps)go(s, gradpwy)}dS

because of (3.2).

By means of the Schwarz inequality for the local scalar product <, >,
it holds that [2(widivps)go(s, gradpwy)| < (widivps)*+2c2k™2 < 3,5 >
([1]). The above inequality and (3.3) imply

1 ;
(3.4) 3 B(m{Tr(witBD(s)BD(s)) + (wrdivps)?}dS

< 2 ! 239 X .
< fm) wiga(po(s) + An(s), s)dS + 287 [ <55 dS

Definition 3.1 ([11]). If s € V(F) satisfies
Bp(s) =0 and divps = 0,

then s is called a transverse harmonic field of F'.
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Proof of Theorem A. Suppose that Ap(s) = —pp(s). Since
2¢°k72||s||Bar) — 0 as k — oo,

we have from (3.4)

8 = % B(Zk){Tr(‘BD(s)BD(s))+(divps)2}d5

S [, ey 90(p0(8) + An(s), 8)dS.

Therefore, we have Bp(s) = 0 and divps = 0, that is, s is L-transverse
harmonic field. Conversely, if s is a transverse harmonic field, that is,
9o(Ap(s)(m(Xa)), 7(Xy)) = go(7(X.), Ap(s)(7(Xs))) and divps = 0, then

we obtain

0 = go(DxcDxas,w(Xs)) + go(Dxas, Dxcm(Xs))
—go(Dx.m(X,), Dxss) — go(m(X,), Dx.Dx,s).

Transvecting ¢*° to this equation, it follows that Ap(s) + pp(s) = 0
with the aid of divps = 0. This completes the proof of Theorem A.

Proof of Theorem B. Let s € V(F') be an L*-transverse harmonic field.
Then Theorem A yields

< pp(s) + Ap(s),wis >pak=0.
Hence, if pp is non-negative everywhere in M, then
(3.5) < Ap(s),wis >pEn< 0
On the other hand, for any s € V(F), it holds that

< Ap(s),wis >payy = < wiDs,wiDs > pgak
+2 L wiDs, d"wi @ s > p(2k)

and
1t 1 2 9.21.=2)| «||2
2 < wyDs, d"wr ® s >paky | < 5llwnDsllpar) + 26k sl ),
which and (3.5) yield

1 »
”kaSH?a(zk) - §l|kaS”23(2k) —2c%k 2||~““219(2k)

< Jlwe Ds|[Bary + 2 € wiDs, d"wie @ s 3> p(ary
<0.
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Thus, as k — oo, we have

1
0< §||DS|[2B(zk) <K Ap(s),s >pen< 0,

and consequently, Ds = 0, that is s is D-parallel. Moreover, if the Ricci
operator pp is positive at least one point of M, then any transverse har-
monic field s is zero, which completes the proof of Theorem B.
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