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ALMOST a-CONVEX QUASI-ORDERED
SYNTOPOGENOUS SPACES

S. H. Chung

1. Introduction

Burgess and Fitzpatrick [1] have introduced the concept of quasi-
ordered syntopogenous spaces and it is known to be a nice generalization of
topological ([12]), proximity ([14]) and uniform ([12], [13]) ordered spaces
respectively. In [2], [3], [4] and [10], the authors have introduced various
concepts of convex quasi-ordered syntopogenous spaces generalizing the
classical one, but they fail to be a complete category except one in [4].

Let us denote by Qord (Syn) the topological category of quasi-ordered
sets (syntopogenous C;pch%) and increasing (continuous, resp.) maps, and
OSyn the mixed topological category of Syn and Qord ([9]).

The aim of the present paper is to introduce a notion of almost a-
convex quasi-ordered syntopogenous spaces which generalizes a-convex
spaces, and then we show that

1) the full subcategory a-ASyn of OSyn determined by almost a-convex

spaces is bireflective in OSyn;
2) the full subcategory a-CSyn of OSyn determined by a-convex spaces

15 coreflective in a-ASyn and

3) the full subcategory SyOSyn of OSyn determined by symmetrizable
spaces is bireflective in OSyn and hence SyOSyn is bireflective in p-ASyn.

It is assumed that the reader is familiar with the notion and results
of Csaszar ([5]) and Matolcsy ([10]). We recall in particular that for an
arbitrary quasi-ordered syntopogenous (X,S, <), among the increasing
(decreasing) syntopogenous structures coarser than S there exists a finest
one on (X, <), and it is denoted by &§*(S*, resp.) [2], [4], [10]). For
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an elementary operation a, a quasi-ordered syntopogenous space (X, S, <
) is called a-convex if S ~ (S* Vv 8§ (2], {3], [4] and [10] for a = 14
or p);(X,8,<) is called symmetrizable if there exists a symmetrical i-
convex syntopogenous structure § on (X, <) such that S < § < &
([10]); (X,S,<) is called continuous if for <€ &S, there is <,€ & such
that A < B implies :(A) <, ¢(B) and d(A) <; d(B) {11); and (X, S, <) is
called feebly a-convex if for any <€ &, there is a family ¢ C =z, such that
<Ce* < 8° [4].

2. Almost a-convex spaces

Throught this section all spaces are assumed to be quasi-ordered syn-
topogenous spaces, and a will denote an elementary operation.

Definition 2.1. A space (X,S,<) is said to be almost a-convez if § <
(S* v S§H

From the definition, the following is immediate:

Remark 2.2. 1) A space (X,S8,<) is almost a-convex ifl S VS, < 8§ <
(§1VS,)7, for some increasing (decreasing, resp.) syntopogenous structure
S1(8,, resp.) on (X, <).

2) Let o' be an elementary operation such that $¢ < §% for any
syntopogenous structure §. Then if (X,S, <) is almost a-convex, then
(X,S, <) is almost a'-convex.

3) Every a-convex space 1s almost a-convex.

4) Every symmetrizable space is almost p-convex.

5) If (X, S, <) is almost a-convex, then (X, 8%, <) is a-convex.

6) If (X,S8, <) is almost a-convex, then (X, S, <) is feebly a-convex.

Lemma 2.3. Suppose (X,8,<) is a space satisfying §¢ = S%. Then
(X, S, <) is symmetrizable iff S*° < S < §*%7.

Proof. Suppose that (X, S, <) is symmetrizable. Then there 1s a symmet-
rical 2-convex syntopogenous structure & on (X, <) such that Sp < S <
S§. Since 8g is symmetrical i-convex, So = S§°, so that § < §**?. Take
any <€ S and let A <* B. Then X - B < X — A. Since § < 5;°,
there is <o€ Sp such that <C<g’"; hence X — B <37 X — A. Using (4.7)
and (3.33) of [5] it follows that for any b€ X — B, A <}* X —b. Since
Sy < 8§, there is <;€ § such that <§°C<;, and hence A <; X — b {or
all b € X — B. Since §°1s perfect, X — B <§{ X — A, or A <; B. Thus

St < §. The converse is trivial.
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As the following two examples show, the statements of Remark 2.2
cannot be conversed except for 1) and 2).

Examples 2.4. 1) Let (R, <) be the real line with the usual order < and
let < be generated by the set of all closed sets in R. Obviousely, <* (<)
is generated by {[r,00) : 7 € R} ({(—o0,r] : » € R}, resp.). Then for
a = porb (<*U > =C is the discrete syntopogenous structure on
R, so that (R,{<}, <) is almost a-convex. But it is neither p(b)-convex
nor symmetrizable. In fact, for any z € R, z < z. Thus <P=<’=C.
Since <#¢C, it follows that (R, {<}, <) is not p(b)-convex ([10]). Since
< is generated by the usual topology on R, <°is perfect. On the other
hand, for each r € R, (—oo,r) <* (—o0,r), but (—oo,r) < {—oco,r) is
impossible. Thus by Lemma 2.3, (R, {<}, <) is not symmetrizable.

2) Let (R,<) be as above, and for each natural number n, H, =
(—oo, —n) U [n,00). Let us consider a symmetrical topogenous structure
{<}on R, where A < Biff A C B and there js some n such that ANH,, = 0
implies H,, C B. Then (R, {<}, <) is p-convex and weakly p-convex ([10])
(R,{<}, <) is feebly p-convex ([4]). But <*=<'=<gyr is the indiscrete
syntopogenous structure on R, and therefore it is not almost p-convex.

Proposition 2.5. Suppose (X,S,<) is a space such that S** ~ §** and
Ste ~ Sl Then (X, S, <) is almost a-convez iff (X,5%, <) is a-convez.
Proof. Suppose (X,5% <) is a a-convex. Then we have § < §% ~ (§** V
Seha ~ (Srev She)e ~ (S v She ([5]); hence (X, S, <) is almost a-convex.
The converse is trivial by Remark 2.2.5.

[t is well-known [11] that if (X, S, <) is a continuous space then S*? ~
S? and S ~ SP!. Using this fact together with the above proposition,
we have the following:

Corollary 2.6. Let (X,8,<) be a continuous space. Then (X,8,<) is
almost p-convex «ff (X,S?, <) is p-conver.

Let us recall that an elementary operation a is said to be symmetrical
iff ac = ca ([5]).

Proposition 2.7. For a symmetrical elementary operation a, (X, S, <) is
almost a-conver iff (X,5¢, <) is almost a-conver. Moreover, if (X,S, <)
is almost a-convez, then (X,57, <) is almost a-convez.

Proof. The first part follows from the fact that & < (§* v 8§') implies
S¢ <« (Suv Sl)ac — (Su vV Sl)ca — (Suc vslc)a — (Scl V; Scu)a ([4]’ [5])) and
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the second part from the fact $* ~ (S§v §)°.

Remark 2.8. Let (X,S5,<) be a symmetrical space. Then the following
statements are equivalent:

1) (X, S, <) is almost ¢-convex.

2) So < & < §§* for some increasing structure Sp on (X, <).

3) So < & < 53° for some decreasing structure Sp on (X, <).

Proof. Suppose (X,S, <) is almost a-convex, then by (2.6.2) of [4], one
has § < (§*V 8N = (§*V §*)e ~ §*2. Clearly §** < §. Hence S* will
do the job for S5. The other implications 2) = 3) and 3) = 1) are trivial.

Proposition 2.9. Let (X,S,<) be a compact symmelrical space. Then
the following statements are equivalent:

1) (X, 8, <) is almost p-convez.
2) (X, S, <) is symmelrizable.
3) (X,S,<) is almost 1-convex.

Proof. 1) and 2} are equivalent by Remark 2.8 and 2.2.4. Suppose (X, S, <
) is almost p-convex. Then S < (§*V S')? and hence §? ~ (S* v §')?.
Since S*V &' < &, §* v &' is compact. By Lemma 8 of [6], § < S* Vv S'.
Thus § ~ §*V S'. Hence 1) implies 3). The converse is clear by Remark
2.2.2.

Lemma 2.10. Lel G : C — D be a funclor and A(B) a subcategory of
C(D, resp.) such that G has a restriction E: A — B, i.c., GoH = Fol/,

where H, F are embedding functors. Suppose

1) B is a coreflective (reflective, resp.) subcategory of D.

2) E: A— Bisfull and G : C — D is faithful and full; and for
each C € C, there is some A € A such that E(A) is wsomorphic to
B-coreflection (B-reflection, resp.) of G(C). Then A is a coreflective
(reflective, resp.) subcategory of (.

Proof. Take any C' € C. Let u: FF(B) — G(C) be the B-coreflection for
G(C), then by the assumption, there is an isomorphism g : £(A) — B
for some A € A. Since G is full, there is an h : H(A) — C in C with
G(h) =uo F(g): Go H(A) — G(C). Then (A, h) is an A-coreflection of
C. Indeed, for any f: H(R) — C in C, there is a unique j : E(R) — B
in B such that the diagram
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FoE(R) = GoH(R)
F(3) J_ \ G(f)

F(B) -5G(C)

commutes. Since ¢ : E(A) — B is an isomorphism in B, the diagram

GoH(R) = FoFE(R)

F(g~"0j) J’ \G(/)

GoH(A) = FoB(A) T g

commutes.

Since E is full, there s an m : R — A in A with E(m) = g7' 0 j. Then
Go H(m) = F(¢9~" oj). Since G is faithful, h o H(m) = f. Moreover,
such an m is unique. Thus A is a coreflective subcategory of C. The other
statement follows by duality.

Let a-OSyn denote the full subcategory of OSyn consisting of those
quasi-ordered syntopogenous space (X,S, <) with § ~ §°.

Proposition 2.11. a-OSyn is coreflective in OSyn.

Proof. For any (X,8,<) € OSyn,(X,5% <) € a-OSyn, and the identity
map ly : (X,8%<) — (X,5,<) is a continuous increasing map [5].
Let (X, So, <o) € a-OSyn and f : (Y, 8o, <o) — (X, S, <) a continuous
increasing map. Let g : (¥,8, <o) — (X,5% <) be the map f as set
maps. Since g7 (S) < S and (Y, So, <o) € a-OSyn, ¢7(5%) < So. Thus
¢ Js a continuous increasing map. Thus 1y : (X,5%, <) - (X, S, <) is the
a-OSyn- coreflection of (X, S, <).

Let a-CSyn (a-WSyn, a-FSyn) denote the full subcategory of OSyn
determined by a-convex (weakly a-convex, feebly a-convex, resp.) spaces.
Then one has the following:

Corollary 2.12. 1) a-CSyn is coreflective in a-ASyn.

2) a-WSyn is coreflective in a-FSyn.
Proof. 1t is immediate from Proposition 2.11, and the fact that the com-
mutative diagram
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a-ASyn — a-FSyn — OSyn

clearly satisfies the assumption in Lemma 2.10, where the arrows denote
embedding functors.

Theorem 2.13. a-ASyn is birecflective in OSyn.

Proof. Since OSyn is a properly fibred topological category, it is enough
to show that a-ASyn is closed under the formation of initial sources in
OSyn. Suppose (fi : (X,S,<) — (X5, 8i, <i))ier 1s an initial source in
OSyn and each (X;,Si,<;) € a-ASyn. Then S ~ Vf7'(S;) and z <
y iff fi(z) < fi(y) for all 2 € I. Since for each 1 € I, (X,,S;, <)) €
a-ASyn, S;, VS, < & < (S, V&), for some increasing{decreasing)
syntopogenous structure §; (S,,, resp.) on (X;, <;). Tor each 1 € J,
fi_l(‘sf) < fi_]((‘sil V‘Si?)a) = fi_l(‘gil N Siz)a ([5]> (93): (97)) Thus
VITHS) < VIS, V)t < (VTS VS = f V(S V 8,))"
= (fTH VS,V VS, (5], (8.97), (8.98), (8.99), (9.10), (K,)). From
(1.1.5) and (1.1.6) of [10], Vf7'(S;,) and Vf7}(S;,) are increasing and
decreasing on (X, <), respectively. I'rom (8.98) and (9.3) of [5], it follows
that V£ 1(S;,) and Vf7'(S,,) are coarser than f7'(S;) for all i € 1. Hence
by Remark 2.2.1, (X, S, <) is almost a-convex space.

Corollary 2.14. 1) a-ASyn is lopological and complele.
2) a-ASyn is closed under the formation of limits in OSyn.

The following is now immediate from the above theorem, Lemma 2.10
and Theorem 3.3 in [4].

Corollary 2.15. 1) a-CSyn is bireflective in a-OSyn.
2) a- WSyn is bireflective in a-OSyn.

Let SyOSyn denote the full subcategory of OSyn determined by sym-
metrizable spaces. Then one has the following:

Proposition 2.16. SyOSyn is bireflective in OSyn, and hence SyOSyn s
bireflective in p-ASyn.

Proof. Let us again show that SyOSyn is closed under the formation
of initial sources in OSyn. Suppose (fi : (X,8,<) = (X:S8i, <0))ier 18
an initial source in OSyn and each (X, S;,<;) is symmetrizable. Since



Almost a-convex quasi-ordered syntopogenous spaces 241

(X:, i, <i) € SyOSyn, there exists syrametrical i-convex syntopogenous
structure Sy, on (X;, <;) such that §;; < & < 8. Then VTS, <
VITHS) < VTS < (VATNSHP = (V(Sa)P. Thus (X,S,<)
1s symmetrizable. Since SyOSyn is a full subcategory of p-ASyn, SyOSyn
is also bireflective in p-ASyn.
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