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ALMOST a-CONVEX QUASI-ORDERED
SYNTOPOGENOUS SPACES

S. H. Chung

1. fntroduction
Burgess and li'itzpatrick [l] have introduced the concept of quasi

ordered syntopogenous spaces and it is knorvn to be a nice generalization of
topological ([12]), proximity ([1a]) and uniform ([12], [13]) ordered spaces
respectively. In [2], [3], [4] and [10], the authors have introduced various
concepts of convex quasi-ordered syntopogenous spaces generalizing the
classical one, but they fail to be a complete category except one in [4].

Let us denot,e. by Qord (Syn) the topological category of quasi,ordt:rcd
sets (syntopogcnorrs spaccs) aud increasirrg (continuous, resp.) rnaps, and
OSyn tire rrrixrxl tol>ological catcgory of Syn ancl Qord (lg]).

llie airn of thc present papel is to iltroduce a notion of allrrost a-
convex rpasi ordcrcd syntopogenous spaces which generalizes c-convex
spaces, and thcn lvc shorv that

1) the full subcatcgorv o-ASyn of OSyn determincd by almost rr-convex
spaces is birefiectivc in OSyn;

2) the full sub<:atcgoly c-CSyn of OSyn determined by a-convcx spac<:s
is corr.fra.tiv('irr a-,\ S vn and

3) the full subr:a,1,r:gory SvOSyn of OSyn clelerminecl by synrrnr:l, r'iza.trlt:
spaces is bilcfk:ctivc in OSyn and hcrrce SyOSyn is bireflectivc in p-ASyn.

It is assurrccl thal, the reader is familiar with the notion and results
of Csaszar ([5]) ancl N,latolcsy ([10]). Wc recall in particular that fol an
arbitlary quasi-orderecl syntopogenous (X,S, S), among the increasing
(decreasing) syntopogenous structures coarser than 5 there exists a finest
one on (X, <), ancl it is denoted by 5"(5t, resp.) [2], [+], [t0]). For
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236 5. H. Chung

there is <o€ 56 such that <e<8"o; hence X - B
and (3.35) of [5] it follows that for any b € X -

an elementary operation o, a quasi-ordered syntopogenous
) is called c-convex if S - (S" v Sr)" ([2], [3], [+] and
or p); (X, 5, <) is called symmetrizable if there exists a
convex syntopogenous structure 5 on (X,<) such that
([10]); (X,5, <) is called continuous if for <€ S, there

rrcal ?-convex syntopogenous structure 56 on (X, <)
Sj. Since.56 is symmetrical i-convex,5o = S0",, so
any (€ 5 and let A <"" B. Then X - B < X -

that A < B implies i(,4) <1 i(B) and d(A) <, d(B) [u]; and (X,.S, <) is
called feebly d-convex if for any <€ 5, there is a family e C e. such that
<c e" < S' [4].

2. Almost a-convex spaces

Throught this section all spaces are assumed to be quasi-ordered syn_
topogenous spaces, and a will denote an elementary operation.

Definition 2.1. A space (X, S, <) is said to be almost a-conuex if S <
(.t" v 5r)'.

From the definition, thc following is immediate:

Remark 2.2. 1) A space (X,.9, <) is almost o-convex iff Sr V & < S <
(Sr VSr)', for some increasing (decreasing, resp.) syntopogelrous strucrurc
51(5r, resp.) on (X, <).

2) LeI a' be an elementary operation such that S. < S"' for anv
syntopogenous structure 5. Then if (X,S, () is almost a-convex, then
(X,S, S) is almost a'-convex.

3) Every d-convex space is almost a-convex.
4) Every symmetrizable space is almost p-convex.
5) If (X,5, () is almost d-convex, then (X, S", () is o-convex.
6) If (X, S, () is ahrrost a-convex, then (X, S, <) is fccbly o-convex.

Lemma 2.3. Suppose (X, S, S) is a space satisfying S, : Sq . T,hcn
(X, S, S) is symmetrizable iff 5". < 5 < ,S""p.

Proof Suppose that (X,5, () is symmetrizable. Then there is a symmct-
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Almost c-convex quasi-ordered syntopogenous spaces ,11

As the following two examples show, the statements of Remark 2.2
cannot be conversed except for 1) and 2).

Examples 2.4. 1) Lel (fi, <) be the real line with the usual order ! and
let < be generated by the set of all closed sets in _8. Obviousely, <" (<t)
is generatcd by {[r, oo) : r € R] ({(--, r] : r € R}, resp.). Then for
a -- p ot 6, (<" U >')o' :c is the discrete syntopogenous structure on
.R, so that (1f, {<}, () is almost o-convcx. But it is neither p(6)-convex
nor synrnetrizable. In fact, for any r € R, t < r. Thus (p:(6:C.
Sincc <f C, it follorvs that (/?, {<}, S) ir nor p(6)-convex ([t0]). Sincc
<" is gcrrclated by the usual topology on 1i, <. is pcrfect. On the other
harrd, for each r € ,?, (-co, r) <". (-o", 

"), but (-oo, r) < (-oo, r) is
irnpossiblc. Thus by Lemma 2.3, (l?, {<}, <) is not symmetrizable.

2) LeL (R,() bc as above, and for each natural number n, Hn :
(-co, -z) U [n, oo). Let us consider a syrnmetrical topogenous stmcturc
{<} on l?, rvhere,,1 < Bitr A C B and there is sorne n such that AOfl^ = 0
irlplies 11,, C B. 'l'hen (n, {<}, () is.p-convex and weakly p-convex ([10])
(11, {<}, () is frx:bly p-convex ([4]). llut <":<r=(o,a is rhe indiscrcrc
svntopogcrlous structure on Il, and thelcforc it is not almost p_convex.

Proposition 2.5. Suppose (-X, S, <) is a spacc such that 5"" - 5"" antl
S/o ry Sar. 'l'hen (X.,5,1) is almost a-conr?j if (X,5",!) is a-conuet.
Prrof Suppose (X,S", <) is a c-convex. Then we have S < S" - (S"" V
S'r)' - (S""vS,.)" - {S"uS,;" ([b]); hcncc (_f,S, <) is almosr c-convex.
'lhe convcrse is trivial by Remark 2.2.5.

It is well-known Itt] that if (_X,S, S) is a continuous space thcn S"p _
S?" and Srp - Spl. Using this fact together with the above proposition,
lvc havc the folJowing:

Corollary
alnt,ost p-contter

Let us recall
ilt ac: ca ([5]).

Let (X,,5,<) be a continuous space. Then (X,S, <) is
ifr: (X , Se ,1) is p-conocx.

that an elementary operation c is said to be symmctrical

Proposition 2.7. For a symmetrical clemenlary operation c, (X, S, <) is
alrnost a-contet ifl'(X,5",1) is almost a-conLer. Moreooer, if (X,5,<)
is almost a-conuer, then (X,5",1) is alnost a-conoer.
ProoJ. 'l'he fir'st part follows from thc fact that S < (S" V Sr)" implies
s' < (5'.v 5r1." : (5,v5r)". : (5,," v5r";" : (sdvs."). (t41, t5l), and
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the second part from the fact .S" - (S V 5")c.

Remark 2.8. Let (X,S, <) be a symmetrical space. Then the following
statements are equivalent:

1) (X,5, () is almost d-convex.

2) 50 < S < 5j' for some increasing structure 56 on (X, <).

3) So < S < 5j' for some decreasing structure 56 on (X, <).

Proof Suppose (X, S, <) is almost d-convex, then by (2.6.2) of [a], one
has 5 < (S" V S')" : (.S" v 5"";' - 5"'". Clearly S"" < 5. Hence 5" will
do the job for .96. The other implications 2) + 3) and 3) + l) are trivial.

Proposition 2.9. Let (X, S, S) be a compact symmetrical space. Then
the follouing statements are equiaalent:

1) (X, S, 1) is almost p-connex.

2) (X, S, S) is symrnetrizable.

3) (X, S, 1) is almost i-conuet.

Proof. 1) and 2) are equivalent by Remark 2.8 an<l 2.2.4. Suppose (X, 5, <
) is almost p-convex. Then 5 < (5" V 5r)o .nd hence .$p - (S'V.S')p.
Since 5" V 5r < .9, 5" v Sr is compact. By Lemma 8 of [6], .S < S" V,Sr.
Thus 5 - ,S" V.S'. Hence l) implies 3). The converse is clear by Remark
2.2.2.

Lemma 2.tO. Let G : C --+ D be a functor and A(B) a subcategory of
C(D , resp.) such that G has a restriction E: A --+ B, i.e., GoH : FoE,
where H, F are embedding functors. Suppose

7) B is a corefl,ectioe (reflectiae, resp.) subcategorV ol D.

2\ E: A --+ B is Jull and. G: C -- D is faithful and. full; and for
each C e C, there is sorne A e A such that E(A) is isomorphic to
B -coreflection (B-refiection, resp.) of G(C). Then A is a coreflectioe
(reflectiue, resp.) subcategorv of Q-.

Proof. Take any C € C. Let u: F(B) --+ G(C) be the B-coreflection for
G(C), then by the assumption, there is an isomorphism g: E(A) -- B
for some .4 € ,4. Since G is full, there is an h : H(A) --+ C in C with
G(h) : uo F(g) : G o H(A) + G(C). Then (A'A) is an f-coreflection of
C. Indeed, for any / : H(R) --+ C in C, there is a unique j : E(R) -- B
in B such that the diagram
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Almost o-convex quasi-ordered syntopogenous spaces

G o H(R)

\,,,,
F(B) -:1G(C)

commutes. Since g : E(A) -+ B is an isomorpfism in B, the diagram

G o I/(a) -- F o-E(R)

r(g-'"j) I
G o H(A) F o E(A) "'F%ctrl 

",",
commutes.
Since E is full, there is an rn t R -- A in :! with E(m) = 9-1 o j. Then
G o H(m) = F(c-t oi). Since G is faithful, ho E(m) - /. Moreover,

such a.n m is unique. Thug .4 is a coreflective subcategory of e. The other
statement follows by duality.

Let a-OSyn denote the full subcategory of OSyn consisting of those
quasi-ordered syntopogenous space (X,,.9, () with S - 6".

Proposition 2.11. a-OSyn is corcflectitte in OSW.

Proo!. For any (X,5, S) e OSyn,(X,Eo, () € a-OSyn, and the identity
map 11 : (X,5', () - (X,.5, S) is a continuous increasing map [5].
Let (X,8o,So) € a-gsyn and / : (Y,50,<o) --+ (X'5'<) a continuous

increasing map, Let g : (Y,So, So) + (X,Sn,() be the map J as set

maps. Since g-1(.9) < 5s and (f,50, <o) € a-Osyn,9-t(6") ( 5s. Thus
g is a continuous increasing map. Thus ly : (X,5', () --+ (X,.9, <) is the

"-9!y!- coreflection of (X,5, <).

Let a-CSyn (a-WSyn, c-FSyn) denote the full subcategory of OSyn

determined by @-convex (weakly d-convexr feebly o-convex, resp.) spaces.

Then one has the following:

Corollary 2.12. l) a-pfgn is coreflectioe in a-ASyn,

2) 
"-lVfS" 

is corcflectioe in a-FSyn,

Proof. lt is immediate from Proposition 2.11, and the fact that the com-

mutative diagram
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a-C Syn "'-- 6W Syn --+
llTJ

a-ASyn ----- a-FSyn ------+

clearly satisfies the assumption in Lemma 2.10, where the arrows denote
embedding fu nct ors.

Theorem 2.13. a-ASyn is birecflectiue in OSyn.

Proof. Since OSAn is a properly fibred topological category, it is enough
to show that o-ASyn is closed under the formation of initial sources in
OSyn. Suppose (f, : (X,S, <) -' (X;,5;, <i));er is an initial source in
OSyn and each (X;, S1, <i) e o-ASyr,. Then 5 - V/at (5,) and c S
y itr f;(x) <, f,(y) for all i € 1. Since for each t € 1, (Xr,S.,<r) €
a-ASyn, 5t, V 5r, < 5, < (5., V Si, )', for some increasing(decreasing)
syntopogenous structure Si,(S;r, resp.; on (X.,<;). For each i € /,
.ft'(sr) < .fi '((s,, v 5,")") - "ft1(s,, v s,,)" ([5], (9.3), (9.7)). Thus
v/r'(s,) < v,fa'(s,, v5,,). < (v,fa'(s,, v.t,)).: /i'(v(s., vs,,))"
: (/i-r(vsil)v/a'(v5")). ([5]' (s.97)' (s.98)' (8.ee), (9.10), (Ii1)). From
(1.1.5) and (1.1.6) of [10], Vi-t (.9., ) and Vf r(d.) are increasing and
decreasing on (X, <), respectively. From (8.98) and (9.3) of [5], it follows
that V/ir(E,) and Vi-t(.9i,) are coarser than /ir(5,) for all i e 1. Hencc
by Remark 2.2.1, (X,5, () is almost d-con\ex space.

Corollary 2.14. 1) "-48" it topological and. comptlete.

2) 
"- 4fg" is closed under the fotmation ol limits in OSyn.

The following is now immediate from the above theorem, Lemma 2.10
and Theorem 3.3 in [a].

Corollary 2.15. 1) a-pfly is birvflectiae in a-OSyn.
2) o-lVES" is bireflectiae in a-OSyn.

Let SyOSyn denote the full subcategory of OSyn determined by sym-
metrizable spaces. Then one has the following:

Proposition 2.L6. SyOSyn is bireflective in OSyn, and, hencc SyOSyn is
bireflectiue in p-ASyn.

ProoJ. Let us again show that SyOSyn is closed under the formation
of initial sources in OSyn. Suppose ('f; : (X,E, <) - (&4, <;));er is
an initial source in OSyn and each (X,,,9,, (;) is symmetrizable. Since
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(Xi,4, <r) e t!W, there exists symmetrical i-convex syntopogenous
structure 6;o on (X;,!) such that 5,o < 4 < Sfr,. Then V"fit(E ) <
vti'(si) < v/i-1(4")P < (v"fi'(s")r)P - (v/i-1(.t;o))r. Thus (x,s,<)
is symmetrizable. Since SyOSyn is a full subcategory of pASyn, SyOSyn
is also bireflective in pASyn.
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