ALMOST *a*-CONVEX QUASI-ORDERED SYNTOPOGENOUS SPACES

S. H. Chung

1. Introduction

Burgess and Fitzpatrick [1] have introduced the concept of quasiordered syntopogenous spaces and it is known to be a nice generalization of topological ([12]), proximity ([14]) and uniform ([12], [13]) ordered spaces respectively. In [2], [3], [4] and [10], the authors have introduced various concepts of convex quasi-ordered syntopogenous spaces generalizing the classical one, but they fail to be a complete category except one in [4].

Let us denote by $\underline{\text{Qord}}(\underline{\text{Syn}})$ the topological category of quasi-ordered sets (syntopogenous spaces) and increasing (continuous, resp.) maps, and OSyn the mixed topological category of Syn and Qord ([9]).

The aim of the present paper is to introduce a notion of almost a-convex quasi-ordered syntopogenous spaces which generalizes a-convex spaces, and then we show that

1) the full subcategory a-ASyn of OSyn determined by almost a-convex spaces is bireflective in OSyn;

2) the full subcategory a-CSyn of OSyn determined by a-convex spaces is coreflective in a-ASyn and

3) the full subcategory <u>SyOSyn</u> of <u>OSyn</u> determined by symmetrizable spaces is bireflective in <u>OSyn</u> and hence <u>SyOSyn</u> is bireflective in *p*-ASyn.

It is assumed that the reader is familiar with the notion and results of Csaszar ([5]) and Matolcsy ([10]). We recall in particular that for an arbitrary quasi-ordered syntopogenous (X, S, \leq) , among the increasing (decreasing) syntopogenous structures coarser than S there exists a finest one on (X, \leq) , and it is denoted by $S^u(S^\ell, \text{ resp.})$ [2], [4], [10]). For

Received May 3, 1991.

Revised July 26, 1991.

I am very grateful to Professor S. S. Hong for his valuable advices.

an elementary operation a, a quasi-ordered syntopogenous space (X, S, \leq)) is called a-convex if $S \sim (S^u \vee S^\ell)^a$ ([2], [3], [4] and [10] for a = ior p); (X, S, \leq) is called symmetrizable if there exists a symmetrical *i*convex syntopogenous structure S on (X, \leq) such that $S_0 < S < S_0^p$ ([10]); (X, S, \leq) is called continuous if for $\langle \in S \rangle$, there is $\langle i \in S \rangle$ such that A < B implies $i(A) <_i i(B)$ and $d(A) <_i d(B)$ [11]; and (X, S, \leq) is called feebly a-convex if for any $\langle \in S \rangle$, there is a family $\varepsilon \subseteq \varepsilon_c$ such that $\langle \subseteq \varepsilon^{ta} < S^a$ [4].

2. Almost *a*-convex spaces

Throught this section all spaces are assumed to be quasi-ordered syntopogenous spaces, and a will denote an elementary operation.

Definition 2.1. A space (X, S, \leq) is said to be almost a-convex if $S < (S^u \vee S^l)^a$.

From the definition, the following is immediate:

Remark 2.2. 1) A space (X, S, \leq) is almost *a*-convex iff $S_1 \vee S_2 < S < (S_1 \vee S_2)^a$, for some increasing (decreasing, resp.) syntopogenous structure $S_1(S_2, \text{ resp.})$ on (X, \leq) .

2) Let a' be an elementary operation such that $S^a < S^{a'}$ for any syntopogenous structure S. Then if (X, S, \leq) is almost a-convex, then (X, S, \leq) is almost a'-convex.

- 3) Every *a*-convex space is almost *a*-convex.
- 4) Every symmetrizable space is almost p-convex.
- 5) If (X, \mathcal{S}, \leq) is almost *a*-convex, then (X, \mathcal{S}^a, \leq) is *a*-convex.
- 6) If (X, S, \leq) is almost a-convex, then (X, S, \leq) is feebly a-convex.

Lemma 2.3. Suppose (X, S, \leq) is a space satisfying $S^c = S^{cp}$. Then (X, S, \leq) is symmetrizable iff $S^{uc} < S < S^{usp}$.

Proof. Suppose that (X, S, \leq) is symmetrizable. Then there is a symmetrical *i*-convex syntopogenous structure S_0 on (X, \leq) such that $S_0 < S < S_0^p$. Since S_0 is symmetrical *i*-convex, $S_0 = S_0^{us}$, so that $S < S^{usp}$. Take any $\leq S$ and let $A <^{uc} B$. Then X - B < X - A. Since $S < S_0^{usp}$, there is $<_0 \in S_0$ such that $< \subseteq <_0^{usp}$; hence $X - B <_0^{usp} X - A$. Using (4.7) and (3.35) of [5] it follows that for any $b \in X - B$, $A <_0^{us} X - b$. Since $S_0^{us} < S$, there is $<_1 \in S$ such that $<_0^{us} \subseteq <_1$, and hence $A <_1 X - b$ for all $b \in X - B$. Since S^c is perfect, $X - B <_1^c X - A$, or $A <_1 B$. Thus $S^{uc} < S$. The converse is trivial.

As the following two examples show, the statements of Remark 2.2 cannot be conversed except for 1) and 2).

Examples 2.4. 1) Let (R, \leq) be the real line with the usual order \leq and let < be generated by the set of all closed sets in R. Obviousely, $<^u (<^1)$ is generated by $\{[r, \infty) : r \in R\}$ ($\{(-\infty, r] : r \in R\}$, resp.). Then for a = p or b, $(<^u \cup >^l)^{qa} = \subseteq$ is the discrete syntopogenous structure on R, so that $(R, \{<\}, \leq)$ is almost *a*-convex. But it is neither p(b)-convex nor symmetrizable. In fact, for any $x \in R$, x < x. Thus $<^p = <^b = \subseteq$. Since $<\neq \subseteq$, it follows that $(R, \{<\}, \leq)$ is not p(b)-convex ([10]). Since $<^c$ is generated by the usual topology on R, $<^c$ is perfect. On the other hand, for each $r \in R$, $(-\infty, r) <^{uc} (-\infty, r)$, but $(-\infty, r) < (-\infty, r)$ is impossible. Thus by Lemma 2.3, $(R, \{<\}, \leq)$ is not symmetrizable.

2) Let (R, \leq) be as above, and for each natural number $n, H_n = (-\infty, -n) \cup [n, \infty)$. Let us consider a symmetrical topogenous structure $\{<\}$ on R, where A < B iff $A \subseteq B$ and there is some n such that $A \cap H_n = \emptyset$ implies $H_n \subseteq B$. Then $(R, \{<\}, \leq)$ is p-convex and weakly p-convex ([10]) $(R, \{<\}, \leq)$ is feebly p-convex ([4]). But $<^u = <^l = <_{\emptyset,R}$ is the indiscrete syntopogenous structure on R, and therefore it is not almost p-convex.

Proposition 2.5. Suppose (X, S, \leq) is a space such that $S^{ua} \sim S^{au}$ and $S^{la} \sim S^{al}$. Then (X, S, \leq) is almost a-convex iff (X, S^a, \leq) is a-convex. Proof. Suppose (X, S^a, \leq) is a a-convex. Then we have $S < S^a \sim (S^{au} \vee S^{al})^a \sim (S^{ua} \vee S^{la})^a \sim (S^u \vee S^l)^a$ ([5]); hence (X, S, \leq) is almost a-convex. The converse is trivial by Remark 2.2.5.

It is well-known [11] that if (X, S, \leq) is a continuous space then $S^{up} \sim S^{pu}$ and $S^{lp} \sim S^{pl}$. Using this fact together with the above proposition, we have the following:

Corollary 2.6. Let (X, S, \leq) be a continuous space. Then (X, S, \leq) is almost p-convex iff (X, S^p, \leq) is p-convex.

Let us recall that an elementary operation a is said to be symmetrical iff ac = ca ([5]).

Proposition 2.7. For a symmetrical elementary operation $a, (X, S, \leq)$ is almost a-convex iff (X, S^c, \leq) is almost a-convex. Moreover, if (X, S, \leq) is almost a-convex, then (X, S^s, \leq) is almost a-convex.

Proof. The first part follows from the fact that $S < (S^u \vee S^l)^a$ implies $S^c < (S^u \vee S^l)^{ac} = (S^u \vee S^l)^{ca} = (S^{uc} \vee S^{lc})^a = (S^{cl} \vee S^{cu})^a$ ([4], [5]), and

the second part from the fact $S^s \sim (S \vee S^c)^q$.

Remark 2.8. Let (X, S, \leq) be a symmetrical space. Then the following statements are equivalent:

- 1) (X, S, \leq) is almost *a*-convex.
- 2) $S_0 < S < S_0^{sa}$ for some increasing structure S_0 on (X, \leq) .
- 3) $S_0 < S < S_0^{sa}$ for some decreasing structure S_0 on (X, \leq) .

Proof. Suppose (X, S, \leq) is almost *a*-convex, then by (2.6.2) of [4], one has $S < (S^u \vee S^l)^a = (S^u \vee S^{uc})^a \sim S^{usa}$. Clearly $S^{us} < S$. Hence S^u will do the job for S_0 . The other implications $2) \Rightarrow 3$ and $3) \Rightarrow 1$ are trivial.

Proposition 2.9. Let (X, S, \leq) be a compact symmetrical space. Then the following statements are equivalent:

- 1) (X, S, \leq) is almost p-convex.
- 2) (X, S, \leq) is symmetrizable.
- 3) (X, S, \leq) is almost *i*-convex.

Proof. 1) and 2) are equivalent by Remark 2.8 and 2.2.4. Suppose (X, S, \leq) is almost *p*-convex. Then $S < (S^u \vee S^l)^p$ and hence $S^p \sim (S^u \vee S^l)^p$. Since $S^u \vee S^l < S$, $S^u \vee S^l$ is compact. By Lemma 8 of [6], $S < S^u \vee S^l$. Thus $S \sim S^u \vee S^l$. Hence 1) implies 3). The converse is clear by Remark 2.2.2.

Lemma 2.10. Let $G : \underline{C} \to \underline{D}$ be a functor and $\underline{A}(\underline{B})$ a subcategory of $\underline{C}(\underline{D}, resp.)$ such that G has a restriction $E : \underline{A} \to \underline{B}$, i.e., $G \circ H = F \circ E$, where H, F are embedding functors. Suppose

1) \underline{B} is a coreflective (reflective, resp.) subcategory of \underline{D} .

2) $E : \underline{A} \to \underline{B}$ is full and $G : \underline{C} \to \underline{D}$ is faithful and full; and for each $C \in \underline{C}$, there is some $A \in \underline{A}$ such that E(A) is isomorphic to <u>B</u>-coreflection (<u>B</u>-reflection, resp.) of G(C). Then <u>A</u> is a coreflective (reflective, resp.) subcategory of <u>C</u>.

Proof. Take any $C \in \underline{C}$. Let $u: F(B) \to G(C)$ be the <u>B</u>-coreflection for G(C), then by the assumption, there is an isomorphism $g: E(A) \to B$ for some $A \in \underline{A}$. Since G is full, there is an $h: H(A) \to C$ in \underline{C} with $G(h) = u \circ F(g): G \circ H(A) \to G(C)$. Then (A, h) is an <u>A</u>-coreflection of C. Indeed, for any $f: H(R) \to C$ in \underline{C} , there is a unique $j: E(R) \to B$ in <u>B</u> such that the diagram

commutes. Since $g: E(A) \to B$ is an isomorphism in <u>B</u>, the diagram

commutes.

Since E is full, there is an $m : R \to A$ in <u>A</u> with $E(m) = g^{-1} \circ j$. Then $G \circ H(m) = F(g^{-1} \circ j)$. Since G is faithful, $h \circ H(m) = f$. Moreover, such an m is unique. Thus <u>A</u> is a coreflective subcategory of <u>C</u>. The other statement follows by duality.

Let a-<u>OSyn</u> denote the full subcategory of <u>OSyn</u> consisting of those quasi-ordered syntopogenous space (X, S, \leq) with $S \sim S^a$.

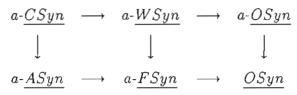
Proposition 2.11. a-OSyn is coreflective in OSyn.

Proof. For any $(X, S, \leq) \in OSyn, (X, S^a, \leq) \in a$ -OSyn, and the identity map $1_X : (X, S^a, \leq) \to (X, S, \leq)$ is a continuous increasing map [5]. Let $(X, S_0, \leq_0) \in a$ -OSyn and $f : (Y, S_0, \leq_0) \to (X, S, \leq)$ a continuous increasing map. Let $g : (Y, S_0, \leq_0) \to (X, S^a, \leq)$ be the map f as set maps. Since $g^{-1}(S) < S_0$ and $(Y, S_0, \leq_0) \in a$ -OSyn, $g^{-1}(S^a) < S_0$. Thus g is a continuous increasing map. Thus $1_X : (X, S^a, \leq) \to (X, S, \leq)$ is the a-OSyn- coreflection of (X, S, \leq) .

Let a-<u>CSyn</u> (a-<u>WSyn</u>, a-<u>FSyn</u>) denote the full subcategory of <u>OSyn</u> determined by a-convex (weakly a-convex, feebly a-convex, resp.) spaces. Then one has the following:

Corollary 2.12. 1) a-<u>CSyn</u> is coreflective in a-<u>ASyn</u>. 2) a-WSyn is coreflective in a-FSyn.

Proof. It is immediate from Proposition 2.11, and the fact that the commutative diagram



clearly satisfies the assumption in Lemma 2.10, where the arrows denote embedding functors.

Theorem 2.13. a-ASyn is birecflective in OSyn.

Proof. Since <u>OSyn</u> is a properly fibred topological category, it is enough to show that $\overline{a \cdot ASyn}$ is closed under the formation of initial sources in <u>OSyn</u>. Suppose $(f_i : (X, S, \leq) \to (X_i, S_i, \leq_i))_{i \in I}$ is an initial source in <u>OSyn</u> and each $(X_i, S_i, \leq_i) \in a \cdot ASyn$. Then $S \sim \vee f_i^{-1}(S_i)$ and $x \leq$ y iff $f_i(x) \leq_i f_i(y)$ for all $i \in I$. Since for each $i \in I$, $(X_i, S_i, \leq_i) \in$ $a \cdot ASyn$, $S_{i_1} \vee S_{i_2} < S_i < (S_{i_1} \vee S_{i_2})^a$, for some increasing(decreasing) syntopogenous structure $S_{i_1}(S_{i_2}, \operatorname{resp.})$ on (X_i, \leq_i) . For each $i \in I$, $f_i^{-1}(S_i) < f_i^{-1}((S_{i_1} \vee S_{i_2})^a) = f_i^{-1}(S_{i_1} \vee S_{i_2})^a$ ([5], (9.3), (9.7)). Thus $\vee f_i^{-1}(S_i) < \vee f_i^{-1}(S_i) \vee S_{i_2})^a$ ([5], (8.97), (8.98), (8.99), (9.10), (K_1)). From (1.1.5) and (1.1.6) of [10], $\vee f_i^{-1}(S_{i_1})$ and $\vee f_i^{-1}(S_{i_2})$ are increasing and decreasing on (X, \leq) , respectively. From (8.98) and (9.3) of [5], it follows that $\vee f_i^{-1}(S_{i_1})$ and $\vee f_i^{-1}(S_{i_2})$ are coarser than $f_i^{-1}(S_i)$ for all $i \in I$. Hence by Remark 2.2.1, (X, S, \leq) is almost a-convex space.

Corollary 2.14. 1) a-ASyn is topological and complete. 2) a-ASyn is closed under the formation of limits in OSyn.

The following is now immediate from the above theorem, Lemma 2.10 and Theorem 3.3 in [4].

Corollary 2.15. 1) a-CSyn is bireflective in a-OSyn. 2) a-WSyn is bireflective in a-OSyn.

Let <u>SyOSyn</u> denote the full subcategory of <u>OSyn</u> determined by symmetrizable spaces. Then one has the following:

Proposition 2.16. SyOSyn is bireflective in OSyn, and hence SyOSyn is bireflective in p-ASyn.

Proof. Let us again show that <u>SyOSyn</u> is closed under the formation of initial sources in <u>OSyn</u>. Suppose $(f_i : (X, S, \leq) \rightarrow (X_i S_i, \leq_i))_{i \in I}$ is an initial source in <u>OSyn</u> and each (X_i, S_i, \leq_i) is symmetrizable. Since $(X_i, S_i, \leq_i) \in \underline{SyOSyn}$, there exists symmetrical *i*-convex syntopogenous structure S_{i_0} on (X_i, \leq_i) such that $S_{i_0} < S_i < S_{i_0}^p$. Then $\forall f_i^{-1}(S_{i_0}) < \forall f_i^{-1}(S_i) < \forall f_i^{-1}(S_{i_0})^p < (\forall f_i^{-1}(S_{i_0})^p)^p = (\forall f_i^{-1}(S_{i_0}))^p$. Thus (X, S, \leq) is symmetrizable. Since \underline{SyOSyn} is a full subcategory of p-ASyn, \underline{SyOSyn} is also bireflective in p-ASyn.

References

- D. C. J. Burgess and M. Fitzpatrick, Syntopogenous preordered space, Math. Proc. Camb. Phil. Soc., 80(1976), 71-79.
- [2] D. C. J. Burgess and M. Fitzpatrick, Syntopogenous preordered space (II), Math. Proc. Camb. Phil. Soc., 83(1978), 19-24.
- [3] D. C. J. Burgess and M. Fitzpatrick, Locally convex syntopogenous spaces, Math. Proc. Camb. Phil. Soc., 85(1979), 445-448.
- [4] S. H. Chung, Quasi-ordered Syntopogenous Spaces, Submitted.
- [5] A. Csaszar, Foundation of General Topology, The Macmillan Co., New York, 1963.
- [6] A. Csaszar, Double compactification d'espaces syntopogenous, Ann. Univ. Budapest, Sect. Math., 7(1964), 3-11.
- [7] H. Herrlich, Topological functors, Gen. Top. Appl., 4(1974), 125-142.
- [8] H. Herrlich and G. E. Strecker, Category Theory, Allyn and Bacon, Boston, 1973.
- S. S. Hong and L. D. Nel, Spectral dualities involving mixed structure, Categorical aspects of Topology and Analysis, Lecture Notes in Math. Springer-Verlag, 915(1982), 198-204.
- [10] K. Matolcsy, Syntopogenous spaces with preorder I (Convexity), Acta. Math. Hung. 43(1984), 347-363.
- K. Matolcsy, Syntopogenous spaces with preorder II (Continuity), Acta. Math. Hung. 44(1984), 279-297.
- [12] L. Nachbin, Topology and Order, Princeton, 1965.
- [13] R. H. Redfield, Ordering uniform completion of partially ordered sets, Canad. J. Math., 26(1974), 644-664.
- [14] M. K. Singal and Sunder Lal, Proxmity ordered spaces, J. London Math. Soc., 14(1976), 393-404.

DEPARTMENT OF MATHEMATICS, COLLEGE OF SCIENCE, KYUNGWON UNIVERSITY, SONGNAM, KOREA