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NEGATIVE DEFINITE KERNELS OF
INFINITELY MANY VARIABLES

Hoda A. Ali

In this paper we shall introduce negative definite kernel of infinitely
many variables. After giving some equivalent formulation of the notion of
negative difiniteness, elementary properties are discussed. We shall also
illustrate the relation between negative definiteness and positive definite-
ness.

1. Properties of Negative-Definite Kernels

The fundamental connection between positive and negative definite
kernels was introduced by Schoenberg(1938) [4].

A study of positive and negative definite kernels with invariance prop-
erties under a group action may be found in Parthasarathy and Schmidt
(1972) [3].

Let X be a nonempty set. A function ¥ : X x X — C is called a
negative definite kernel if and only if it is hermitian (i.e. ¥(y,z) = ¥(z,y)
for all z,y € X) and

Z C,—Ck‘Il(z:j,mk) S 0 (11)
foralln > 2, {z;,--,z,} € X and

{C1,---,C.} CC with Y C; =0 [2].

i=1
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If the above inequalities are strict whenever z;,---,z, are different
and at least one of the Cy,---,C, does not vanish, then the kernel ¥ is
strictly negative definite.

We now list some simple properties of negative definite kernels.

(1) A real-valued kernel ¥ on X x X is negative definite if and only if
V¥ is symmetric (i.e. ¥(z,y) = ¥(y,z) for all z,y € X) and

3 C;CV(aj,21) <0

Jik=1

forallne N, {z;,---,2,} € X and {C,,---,C,} C R and

n

Y.C;=0.

J=1
(2) The negative definite kernel W satisfies the inequality

V(z,2) + ¥(y,y) < 2Re¥(z,y)

Now we consider a negative definite kernel with an infinite number of
variables.

Let R® = (—¢,8) x R® C R' x R® = R*(0 < { < o0) be a layer of the
space R®, and let X = (X, X")(X; € (=¢,¢), 2! = (23,23,---) € R™)
be points of this layer [1]. In R™ let us introduce a measure df(z) =
(p(z1)dz1)® (p(z2)dxs) ® - -+ where C'(R') 3 p(t) > 0 is a fixed weight
U pt)dE = 1).

In particular, this measure is defined also on any layer R7°, with

O(Rz) > 0.
A kernel ¥(z,y), (z,y € R37) is said to be negative definite if for any
cylindrical function u(z) = u.(zy, -, 2n)(u. € Cg°(R;*)). We have the

inequality
[ [ W@ yu@)udoe)do) <o (1.2)
with [z u(-)d0(-) = 0.

A similar definition holds in the case £ = oo, in which case R;° = R,
the measure df(z) must be taken to be Gaussian measure.

Lemma 1.1. If [ : R} — C is an arbitrary function, then the kernel
U(z,y) = f(z) + f(y) is negative definite.
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Proof. Let fR;,o u(z)df(z) = 0, from the inequality

/m/mw@wwuﬁawwﬂww)
= j [ z) + f(¥)]u(z)u(y)do(z)do(y)
=ﬂ$f@m@um@£; dam+j' u(y)do(y).

do =)
Hence, ¥ is negative definite.

Lemma 1.2. The kernel ¥(z,y) = (z — y)? on R is negative definite,
e u(z)db(z) = 0.
Proof.

]mjm (z,y)u(z)u(y)d0(z)do(y)
=[] (=) u(uy)dd(z)do(y)
= [ ctu@)doe) [ u@)ab) + [ y*u@)do) [ u(z)do(x)

00 00
R! (4

2 [, [ ) do(@)doty) <0
So ¥ is negative definite.

2. Relation between Positive and Negative Definite
Kernels

Lemma 2.1. Let ¥ : R} — C be a hermitian kernel. Set X, € R;°
and put ®(z,y) = ¥Y(z,z0) + Y(y,20) — ¥Y(2,y) — Y(z0,20). Then & is
positive definite if and only if ¥ is negative definite. If W(zp,z0) > 0 and
bo(z,y) = ¥(z,z0) — U(y,z0) — ¥(2z,y), then Oq ts positive definite if and
only if ¥ is negative definite.

Proof. Let ® be positive definite and let fR?, u(-)d0(.) = 0, then

0 < [ [ o))
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= [ [ ¥ zo)u(z)ulae)do(z)d0(zo)

{4 (4

+/R°° ./RmI U (zo, y)u(zo)u(y)dz(zo)do(y)

(1 e

- [ [ W@ vueyul)doe)do)

4 4

H/Rgo me W(zo, To)u(zo)u(zo)dO(z0)dO (o).

¢

Consequently,
0<—[ [ Wayu@uy)do)doy)

Hence,

foo fo Vw0 d0ty) <

So ¥ is negative def‘mte

Conversely: Let W be negative definite.
0 > fmjw (2, y)u(z)u(y)d0(z)d0(y)
. / ) jR e zo)u(z ) u(zo)d0(z)dd ()
+ i S a0 (a0 uly)d0 o) d0(y)
- /R o .. V{0, 7o)u(zo)u(zo)d0(zo)d0 (o)

_/Rw] (z, y)u(y)u(y)do(z)do(y)

02— [ [ oG yu(eu(y)dd(z)doy)

then
[ [ e yu(@)u(y)do(z)do(y) > 0

i.e. ® is positive definite.
Now if ¥(zg,z0) = 0. Then

/m/m ®o(z, y)u(z)uly)do(z)do(y)
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-/ . / (,y) + ¥ (w0, 20)Ju(z)u(y)d0(x)do(y)
~ [ [ 8 v E=0)
+/:° /Rgf' W (o, xo)u(zo)u(zo)dd(zo)db(zo)

is positive definite.

Theorem 2.1. Let ¥ : RS} — C be a kernel then W is negative definite if
and only if exp(—tWV) is positive definite for all t > 0.

Proof. If exp(—tW¥) is positive definite then 1 — exp(—tW) is, of course,
negative definite and so there for the point wise limit

1
¥ = OLIEO I(l — exp(—tV¥)).

Now suppose that W is negative definite. We need to obtain that
exp(—t¥) is positive definite for t = 1. We choose zo € R{° and with &
as in the Lemma 2.1 we have:

—lI!(;L', y) == <I>(:r,y) - lIl(;r’ xO) - q’(ys xﬂ) 2 \I’(Zto, 30)1

where @ is positive definite. Hence
[ ] exp(=¥(z,y))u(z)uly)do(z)do )
(4 (4

= /W /m exp[®(z,y) — ¥(z,20) — ¥(y, To) + ¥(z0, x0))

-exp(V¥(z, zo)u(z)] - exp[¥(y, zo) u(y)]do(z)d0(y)

— /w fmexp[qb(:c,y) + U(xo, zo)|u(z)u(y)dd(z)do(y)

from the above lemma
= [ [ exp(@o(z,y))ulz)uly)do(z)do(y)

since exp(®o(z,y)) is positive definite if ®o(z,y) is positive definite [see 2
page 70]. Hence

[ [ exp(=¥(a,y))u(e)u(y)do(z)do(y) > 0
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So exp(—W) is positive definite. Since ¢ > 0 and ¥ is negative definite we
have tV is also negative definite.

Lemma 2.2. Let V(z,y) be a negative definite kernel with strictly positive
real part. Then % s positive definite.
Proof. Since ¥ is negative definite, then by theorem 3.1 the function
exp(—tWV) is positive definite for all ¢ > 0. We can write for (z,y) € R3;
1
U(z,y)

» /wexp(—t\ll)dt.
0

Now

f frp Ty ORI O)

= fmfw(/:o exp[—t¥(z,y)]dt)u(z)u(y)do(z)d0(y)
= [7UL [ expl-t9e plu@iut)doe)do )l > o

So § is positive definite.

Theorem 2.2. Let p be a probability measure on R3; such that 0 <
Jo7 Sdu(s) < oo, and let L, denote its Laplace transform, i.e. L,(z) =
Io° e **du(s),z € C. Then ¥ : R3; — C is negative definite if and only if
L,(tV) is positive definite for all t > 0.

Proof. 1f ¥ is negative definite then by Theorem (2.1) exp(—1V) is positive
definite for all t > 0. We have

L, (10) = /0°° exp(—tsW)du(s)

point wise on R3;, which is positive definite.
If on the other hand L,(¢V) is positive definite for all ¢ > 0, then for
each (z,y) € R3; we get

B 00 1_exp|—z‘.S‘I’(:T,y)| .
. /0 t dpu(s)

— Y(z,y) /Ooo sdu(s) for t — 0.

1

Being a pointwise limit of negative definite kernels, ¥ itself is negative
definite, too.
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Definition 2.1. A positive definite kernel ¢ is called infinitely divisible
if for each n € N there exists a positive definite kernel ¢, such that

= (¢a)".
If ¥ is negative definite then ¢ = e~V is infinitely divisible since ¢, =
exp(—(2)W¥) is positive definite and (¢,)" = ¢.

Lemma 2.2. If f : R — C satisfies Ref > 0 then for each a € [1,2]
the kernel

Va(z,y) = ~(f(2) + FW))"
is negative definite.

Proof. An equivalent formulation is that the kernel —(z + y)* is negative
definite on C. This is clear when a = 1 and a = 2 see Lemma (1.2). For
if [peo u(z)db(z) =

Lo | Weler vyt )utidote)doty) <.
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