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ON THE LIMIT-POINT CLASSIFICATION OF A
WEIGHTED FOURTH ORDER DIFFERENTIAL
EXPRESSIONS WITH COMPLEX
COEFFICIENTS

M. F. EL-Zayat

1. Introduction

In this paper, we are concerned with the differential expression:

) = (ol + (@) + polel"))

Hpae)y'Y + S{mn(@) +p) +paely (1)
= Ah(a)y

on [a,00), we assume that the coefficients function po(z), pi(z), p2(z),
ps(z) and py(x) satisfy the following conditions:

i po(z), p1(z), p2(z), pa(z) and py(z) are real-valued
and po(z) > 0
ii. po(z), pa(z), p2(z) and py(z) € AC)sc[a, 00)
iii. p4(x) € Lige[a, 00). (1.2)
iv. The weight function A(z) > 0 and A'(z) is

continuous on [a, 00).

let Ny, N_ denote the number of linearly independent solutions of the
differential equation;

L(y) = Ahy, A = p+iv (1.3)

Received November 13, 1989.

171



172 M. F. EL-Zayat

For u > 0 and v < 0 respectively, the numbers N, N_ are known to be
independent of A in the respective half-planes.

Also, they satisfy the inequality 2 < N,, N_ < 4 (see 2, section 6.2). In
the real-valued case [in (1.1) this corresponds to taking both p,(z) and
p3(z) to be null on [a,c0), we have Ny = N_, in general this is not true in
the complex case]. Furthere the integers (N, N_) are also the deficiency
indicies of the minimal closed symmetric operator that can be generated
from L, in the Hilbert function space L}[a,00) (see 1 definition XII 4.9).

In the general complex fourth-order case there are known to be exactly
five possible cases for the deficiency indicies (See 2; section 6.2), i.e (2.2),
(2.3), (3.2), (3.3) and (4.4)., but in this paper, we shall only be concerned
with the minimal case (2.2).

2. Preliminaries

For (1.1), the quasi-derivatives yl! are defined by:

/ il " 3 !
v =y =y, WP =po@)y” + 5(ps(2)y)
i n
Y = (&) + pa(2)y’ + 5(ps()y" + Pr(2)y), (2.1)
Y = Ah(z)y

The equation L(y) = Ahy, has the vector formulation:

Y' =AY (2.2)
where
y 0 1 0 0
y 0 ~ w 0
¥= dA= i Py P
g | —B —(p2+pi/dp0) — 1
y (Ah = pa) ~% 0 0

The Lagrange identity for (1.1) is :

L(y)z —yL(z) = [y, 2]

where
[y, 2] = 'z — y17' 4 y Pz — 2P (2.3)
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For (1.1), we have the quadratic expression;

{y5 — 43y (/\h —p)lyl* = poly"I* + paly'F
1 by d Tl '
[y 1 yfy I] e _g_l_[yy' -y y] (2.4)

We transform Y by the transformation W = MY, where M is the di-
5 7

agonal matrix; M = diagonal {ph%,psh%, .phl ,p—g} and p is a posi-
8 0 8

tive twice continuously differentiable function. Clearly, the vector W =

[wh Wz, W3, w4]T 18

T
W = |ph3 ’ 3h’% f’ 4 [2] [3] )
[oh3y, phéy T puhs |
The vector W satisfies: .
W= (p—;)cw (2.5)
C= p_2 MAM™'+ M'M™!
= LMAM= + MM
We consider the conditions:
_ 2(4—1)
3. m—are 0(1) as z = 00, (:=1,2,3).
po(z)h'~%
-t —pa(z)p®
il. ———— <k, forsomek>0 2.6
Po@)h() (26)

7 (p(@) | mla) | K(z)
@ * @ T e

as T — 00

| =o0(1)

1.

Calculation shows that C = [C};] satisfies:

C,',,'.H = 1,y is bounded (i = 1,2,3,4) [by (2.6)]

2 4
p3(z) p
Cia = —(pa(z) + - = 0(1
32 (p2(z) 4P0(I))pg(:c)h5 (1)
as T — 00;
6
Can = Cpp=-— Plﬂs =0(1) z— o0
2poht

8
Ca = (Mh—p)Lo > —K [by (1.10)),
poh
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and otherwise C;; = 0. From (2.5), we get:

=2k

A

4 p2k—3
w, = Y Co— Jy=1 where
k=1 pﬁ
ap = b3 + d4i (kronical delta)

we take, for k =1,2,3,4.

h% 3=k 4k 1 y[k_ll
B = (B e
p* Po"

If we define:
hi 2
W= [ = hoilds
a p?

Thus: _—
4(k— —
Wi _/ - - = lyt=1 2 ds

er

3. Inequalities for a System of Equations

(2.7)

In this section we establish inequalities which will be used in the re-

mainder of the paper.

Lemma 3.1. If W is a solution of (2.5), such that C;; are bounded for
all v and j and if (2.8) holds, such that Wi(oo) < co. Then W, and w,

are 0(1). Fori=1,2,3,4, we have:

W; = O(W, ') asz—o0, i=1,23,

2 1-5

w; = 0(W;,*):1=12,3asz— o0

Proof. Since Wj(o0) < oo, Wi(z) = 0(1) as 2 — oo, i.e
0
W, = 0(W,') as ¢ — oo.
For w;, we write generally that:

t
wi|t = 2] wrwi.ds
a



On the Limit-point Classification 175
Thus for k = 1, [by (2.7)], we get
t 3
wil, = 2/ [(ph?)'y + phiy'|ph¥yds
¥ o3 2 : 3
= 2/ (ph# ) ph |y[*ds + 2/ p*hiy'yds

The first integral of the right-hand side is O(W;) [by (2.6) and (2.8)]

as t — oo and by using cauchy Schwartz inequality, the second integral is

t t 1 t 1
f phiyy'ds = 0([f hly|*ds]? - [fa p*h2 ly'[*ds]?)
11

= O(Wlé W2) as t — oo.

Thus, we can write that:
wily = O(W7 [Wi + W7]) as t — oo
since Wi(z) = 0(1) as  — co. Then:
1
w? = 0(WZ) as z — oo.

Next, for k = 2, we get:

th
W, = / ﬁ;-wgds
ap
By (2.7), we get:
t I .
W, = / wowyds —f (phs) p*h3yy'ds
Integrating by parts the first integral, we get:
¢ t
Wy = wawy |, —/ wywyds — / (ph%)'p:*h%yy'ds
By (2.7) and using Cauchy-Schwartz inequality we get:
1 1
Wy = wowy |, + 0(WZ + W$) as t — o0

But, for £ = 2
t
wilt = 2/ wawyds
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By (2.7) and using Cauchy-Schwartz inequality we get:

wa = O(Wz%[Wz% + W3%) ast — oo

while ;
wy =0(Wf) as t — oo
Hence . . -
W wy = O(Wza[wzf ¥+ W:»?]?) as't — oo
Then

Wy = O(W2[WE + WE]F) + 0(W5 + W) as t — oo
Thus, a division by W, gives:
1 = oW, 2[I/V2 +W3] )+ 0(W, : +I)ast — oo
= 0(W,%2+1)ast— oo,
where I = %";
This means that I(¢) is bounded above, moreover;

tlim InfI(t) >0

Hence .
W, =0(W7)ast— oo
Further, return to w, we get:

w? = O(WAWS + W3]) = 0(Wi) as t — oo

i.e. "
wy =0(W3F)ast — oo

For k=3
¢t pi
Wiy 2/ —w3ds
a p?
By (2.7), we get:
5
W = /w3w2ds—/[ 3h lpa 3h3]y'-p—1y’y|2]ds
Poh’®
5
= w311)2|;—/ w2w3ds—f(p3hé)'_£_ly’y[2]ds
= pohs

' Llg
+2 2popyy S
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By (2.6) and using Cauchy-Schwartz inequality we get:
3 1.1
W3 = w2w3|f, + U(Wa" + WS‘ W;) as t — 00,

For, & =8 :
wilt = 2] wawsds

By (2.7) and using Cauchy-Schwartz inequality, we get:

wd = O(WZ[WZ +W7]) ast— oo
1 1 P ol |
w3 = 0(."4/34 [W32 + W:]E) ast — oo

while s
wy = O(W3) as t — oo.
Hence N . »
Wwotly = O(WSE[W;E b WE]E) ast — o0
l.e

ws = O(W (W3 + Wi TE) + O(W5 (W3 + W) as ¢ — oo
Thus, a division by Wj gives:

1= O(W5?4+1)ast— oo,

1

2
where I = E*%-, this means that /(t) is bounded above moreover
W-’S

lim inf I(t) > 0.

t—o00

Hence )
3

Further, return to w2, we get;

EAE

w} = O(WZ (W5 + W2]) = 0(Wi) as t — oo

i.e
Wa = 0(W4ﬁ) as t — oo.

In a similar way, one can prove that as t — co;

wy = O(Wﬁ), ie. Wy=0(1)ast— oo
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and consequently,

This completes the proof.
We also make use of the vector spaces;

Vi, = {y:My=Ihy})nN Li[a,00)
V. = {z:Mz=2Xhz}N L}[a,00)

Next define.

81, [2]12
A(t) = prJ lds y €V

8 [2]2
) = [Hla, cev

4. Auxiliary Lemmas
To prove the theorem (4.1), we need the following two lemmas:

Lemma 4.1. IfdimVy +dimV_ > 4, then thereisay € Vy and z € V_,
such that:
[v,2] =1

For the proof see (3).

Lemma 4.2. Let I' be a non-negative continuous function on [a,o0) and

define

If as t — oo, H(t) = 0(t3[H"]?), then

t
/ F(s)ds = 0(1), ast — oo.

For the proof see (3).

Theorem 4.1. Let all the conditions of (1.2), (2.6) be satisfied and

o hinb
a2y (4.1)
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Then the equation M(y) = Ahy, has at most two linearly independent

solutions in Li[a, o).

Proof. We first show J;(00) < oo, from the quadratic expression we have:

: n i "= =1
J AR = poly = poly" + paly'P + 2207 — y'5")
i 38
+5 68—y}~ ) Eds (4.2)
t 8
= [ M5 — gy (- 272 s
a Po

Integrating by parts the right hand side, we have ;

f {yPly — 4P’y (1 - )2p

Po
8
~ [ 1M — g} - 5L yas
a ]0
But
8 61
[(1 =222y = 0(£=2) as t — oo, [by (2.6)]
" po Po
Therefore
/!{y["’lﬁ — yBy (- f)z'ifl'ds
a t Pg
5 ' r * " — —f h-
= O(f {[((¥®) + pay + i(pay” + pry)]y — v }P
h
=0(f0(m)y +0(j{pzyy+ =[Py
Byl — Zpyg — oAy ds).
Po y:
Since

¢ Shi t 61,1
[y s = o) - [y yas
a Po a Po

t B Gh% ) Gh% .
= 0(1)—/ Y22 4 (22l y)ds
a Po Po
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But

)ast—aoo.
Po Po

By using Cauchy-Schwartz inequality and by Lemma (3.1) we have;

/ (yt2ly 2 it ——yds

11 3.3
O(WZW3Z + WEiWi)ast — oo
Po

Il

3
i

= 0(J}) ast — oo.

Again

" pli Loy P2pt
=0 kil oty P2,

Poht?

/

By Cauchy-Schwartz inequality and by (2.6), we get:

o
/ P2yy » O(Wf W2 } = 0(.]1 )ast — oo
a 0
Also;
[ o5 + Loyl + “’Sﬂ(ym sy g
2 o W1 S T — T—
6
=/p2h%y’- 2y - ds+2fh| e
s pﬂ 2 poh4

;qt [
+1/h Py _psplds
2 Ja Po pohi

L 1, papt
= h _2h‘r Sd

o=
=

Wl
L~

By Cauchy-Schwartz inequality and by (2.6), we get:

hu
f{;owar [p1lyl? + pdy(ym z

= O(WEWE + Wy + WEWS + WEWS) :O(J, ) as t — oo.

Finally

1 t 4,[2]
j [zlPh = o(f suty B gs
Po
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Return to (4.2) and the left hand side can be estimated as follows:
. 20" &9 : 2P
[ 0w =plyPE(1 = 2)%ds = 0( [ (Ow = po)lyds) as t - oo
a Po t a Po

From (2.6), we get:

[ Oh—pPE(1 =55 = o[ hlylds) = o(Wa)
a Po a

= 0(1)ast — oo

And
t 8 i 8
[ paly' P =22Eds = o[ palyEds)
a t Po a Po
t 4
= o[ phily - B2ras)
“ poh?
1
= 0(W;)=0(J?) ast — oo
Also
8 t 8
g -22ds = [ (- _ 3yl g
/pw i g (y 2P3?J)P y(1- t)pgs
- f = 7yPds) +0( [ By ds)
P
Therefore
t 1
psy"y' (1 — 2)"—ds = O(W3 W3) + 0(W;) = 0(J}') as t — oo
Since
t S 9 t 6
g (1= 2 ds = o( [ iyl ¥y | 2 s ds)
a t° po a pohi
= O(WEWF)=0(J*) as t — oo;
S $12P° %
jp;yy(l——) —ds=0(Jf) ast — o0
a t" po
Finally

/ poly”|*(1 - )2p ds = O(tzJ, ) as t — oo

181
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[By Lemma (4.2); with F' = p®|y"|?]
Hence Jy(o0) < oo. Similarly J;(00) < oo.
If ImA =0, then V, = V_.
If ImA # 0, then dim Vy 4+ dim V_ > 4, and by Lemma (4.1), then [y, z] =
l,forye Vyand Z € V_, ie.

(y'2 — yP12) + (oI — yB¥2) =1

Multiplying both sides by (1 — %)-‘”ipt—* and int.egr'ating from a — t we get:
t hi p® t g 6h1
1 _ gy = 222 / B _ 8,1 — 222
y'z 2')(1 ds+ [ (yz z)(1 ds
[ =20 - H=Fda + [ (gB g1 - HE
t s hipb
= - = ds 4.3
(-2 (43)

d.s)ast—roo

16

h4
Po d -/
O(W;Wy) = 0(J1 5
0([J1J2]7) as t — oo

o
cc'\
¥
=
—
—t
I

| @
p—

i~

-

=
a,
Il

Similarly

t hi 11
[ -H=Lds = ot Jf)

= 0([J1J2)7) as t — oo

The second integral can be estimated as follows:
8 h ¢

[ vf0 P e / y{(=13Y + po2’

LSRG . 7 B —E5

+2{p1"’ po( p3“ )}] i

$ P S ]H hi
=fay(z[21)(1 5)=E ds-l—jpgyz, L P

Po " po
hi ! s hi
‘s fpm (-5 £l By 5P,
< Ja P " po

+0(/ y:—:’p:"‘o2 ds)
4 Po
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t bt
ds = 0(] 2[2}(u)'d3
a Po
T ad g | g
= o[ ZaBnkpryds) +o( [ L2 b fylds)
a Po a Po

11 11
= 0(J7 Ji') + 0(J7 Wy)
0([J1-]2]%) as t — oo;

t s hipS 3.k 3
pay/(1 = =Eds = (WEW) = 0 as £ - oo
a 0
Also
t 30 t ; 6
myz(1 —-—)h Ly = 0(/ h%y-hfzpl'onds)
a Po a poh,T
= 0(l)ast— o0
1 6 t 4,[2] 2
povel(1 = P as = o( [y LED2 g
a Po a Po pnh:
= O(Jf) as t — oo;and
hi p® 1
fyng 2p (1—;)ds=0(.]«})ast—+oo.
a 0
Hence |
t hip®
[ 20 =22 ds = ([ )}) as t - oo
a t" po
Similarly

All these inequalities in (4.3) gives:

lim— oo sup [(1 — f)%‘;ﬁds < oo, and this Contrary to the condition (4.1)
of the present theorem, this means that, the equation M[y] = Ahy, has at
most two linearly independent solutions in L?[a, o).

Remark 1. The contents of this paper generalize the results of the author
in (3) with n = 2.
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Remark 2. 1t is possible to compare the present results with these in (3)
by choosing Py(z) and P3(z) to be mill.
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