DISTORTION THEOREMS FOR ALPHA-STARLIKE FUNCTIONS

Ming-Po Chen and Shigeyoshi Owa

The object of the present paper is to prove some interesting distortion theorems for alpha-starlike functions

1. Introduction

Let A denote the class of functions of the form

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the unit disk $U = \{z : |z| < 1\}$.

A function f(z) belonging to A is said to be starlike of order α if and only if

(1.2)
$$Re\left\{\frac{zf'(x)}{f(z)}\right\} > \alpha$$

for some $\alpha(0 \le \alpha < 1)$, and for all $z \in U$. We denote by $S^*(\alpha)$ the subclass of A consisting of functions which are starlike of order α in the unit disk U. Note that $S^*(\alpha) \subseteq S^*(0) \equiv S^*$ for $0 \le \alpha < 1$.

A function f(z) belonging to A is said to be convex of order α if and only if

(1.3)
$$Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \alpha$$

for some $\alpha(0 \le \alpha < 1)$, and for all $z \in U$. Also we denote by $K(\alpha)$ the subclass of A consisting of such functions. We note that $K(\alpha) \subseteq K(0) \equiv K$ for $0 \le \alpha < 1$, and that $K(\alpha) \subset S^*(\alpha)$ for $0 \le \alpha < 1$.

Received August 2, 1989.

1980 Mathematics Subject Classification. Primary 30C45.

Let α be real and suppose that f(z) belongs to A. If f(z) satisfies

(1.4)
$$Re\{(1-\alpha)\frac{zf'(z)}{f(z)} + \alpha(1+\frac{zf''(z)}{f'(z)})\} > 0$$

for some $\alpha(-\infty \leq \alpha \leq \infty)$, and for all $z \in U$, then f(z) is said to be α -starlike in the unit disk U. We let the class of functions which are α -starlike in the unit disk U be denoted by M_{α} .

The class M_{α} was first introduced by Mocanu [4], and was studied by Mocanu and Reade [5], Miller, Mocanu and Reade [3], Miller [2], and Sakaguchi and Fukui [7].

2. Distortion Theorems

In order to prove some distortion theorems for functions belonging to M_{α} , we have to recall here the following lemmas.

Lemma 1 ([7]). If $f(z) \in M_{\alpha}$ with $0 \le \alpha < 1$, then $f(z) \in S^*$. If $f(z) \in M_{\alpha}$ with $\alpha \ge 1$, then $f(z) \in K$.

Lemma 2 ([1]). If $f(z) \in K(\alpha)$, then $f(z) \in S^*(\beta(\alpha))$, where

(2.1)
$$\beta(\alpha) = \begin{cases} \frac{2\alpha - 1}{2(1 - 2^{1 - 2\alpha})} & (\alpha \neq \frac{1}{2}) \\ \frac{1}{2\log 2} & (\alpha = \frac{1}{2}). \end{cases}$$

Lemma 3. If $f(z) \in M_{\alpha}$ with $\alpha \geq 1$, then $f(z) \in K(\frac{\alpha-1}{2\alpha})$.

Proof. By using Lemma 1 and Lemma 2, we note that if $f(z) \in M_{\alpha}$ with $\alpha \geq 1$, then $f(z) \in K \subset S^*(\frac{1}{2})$, that is, that

(2.2)
$$Re\{\frac{zf'(z)}{f(z)}\} > \frac{1}{2} \quad (z \in U).$$

Therefore, from (1.4), we have

$$(2.3) Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \left(\frac{\alpha - 1}{\alpha}\right)Re\left\{\frac{zf'(z)}{f(z)}\right\} > \frac{\alpha - 1}{2\alpha}$$

which implies $f(z) \in K(\frac{\alpha-1}{2\alpha})$.

Lemma 4 ([2]). If $f(z) \in M_{\alpha}$ with $\alpha > 0$, then for |z| = r < 1 we have

$$(2.4) -K(\alpha, -r) \le |f(z)| \le K(\alpha, r),$$

where

(2.5)
$$K(\alpha, r) = \left\{ \frac{1}{\alpha} \int_0^r \rho^{1/\alpha - 1} (1 - \rho)^{-2/\alpha} d\rho \right\}^{\alpha}.$$

Equality holds in both cases for the function

(2.6)
$$f_{\theta}(\alpha, z) = \left\{ \frac{1}{\alpha} \int_0^z \zeta^{1/\alpha - 1} (1 - \zeta e^{i\theta})^{-2/\alpha} d\zeta \right\}^{\alpha}.$$

Lemma 5 ([6]). If $f(z) \in S^*(\alpha)$ with $0 \le \alpha < 1$, then for |z| = r < 1 we have

(2.7)
$$\left| \frac{zf'(z)}{f(z)} \right| \le \frac{r \log \left\{ \frac{(1+r)^{2(1-\alpha)}}{r} |f(z)| \right\}}{(1-r) \log \left(\frac{1+r}{1-r} \right)} + 1.$$

Equality in (2.7) holds true for the function $f(z) = z/(1-z)^{2(1-\alpha)}$ with z = r.

Lemma 6 ([8]). $f(z) \in S^*(\alpha)$ with $0 \le \alpha < 1$, then for |z| = r < 1 we have

(2.8)
$$Re\left\{\frac{zf'(z)}{f(z)}\right\} \ge \alpha + (1-\alpha)\frac{1-r^2}{r^{1/(1-\alpha)}}|f(z)|^{1/(1-\alpha)}$$

and

$$(2.9) Re\left\{\frac{zf'(z)}{f(z)}\right\} \le \frac{1 + (1 - 2\alpha)r}{1 - r} + \frac{2r\log\left\{\frac{(1 - r)^{2(1 - \alpha)}}{r}|f(z)|\right\}}{(1 - r^2)\log\left(\frac{1 + r}{1 - r}\right)}.$$

For the functions f(z) belonging to M_{α} , Miller [2] gave the following conjecture.

Conjecture. If $f(z) \in M_{\alpha}$ with $\alpha > 0$, then

(2.10)
$$(\partial/\partial r)K(\alpha, -r) \le |f'(z)| \le (\partial/\partial r)K(\alpha, r),$$

where $K(\alpha, r)$ is given by (2.5).

Furthermore, Miller [2] proved the above conjecture for $\alpha \geq 1$. Now, we prove

Theorem 1. If $f(z) \in M_{\alpha}$ with $0 \le \alpha < 1$, then

$$(2.11) |f'(z)| \le \frac{K(\alpha, r)}{r} \left\{ \frac{r \log \left\{ \frac{(1+r)^2}{r} K(\alpha, r) \right\}}{(1-r) \log \left(\frac{1+r}{1-r} \right)} + 1 \right\}$$

for |z| = r < 1, where $K(\alpha, r)$ is given by (2.5). Equality in (2.11) holds true for the function $f(z) = z/(1-z)^{2(1-\alpha)}$ with z = r.

Proof. Note that Lemma 1 gives $f(z) \in S^*$ for functions f(z) belonging to M_{α} with $0 \le \alpha < 1$. Applying Lemma 5 when $\alpha = 0$ and Lemma 4, we can show the inequality (2.11).

Combining Lemma 2, Lemma 3, Lemma 4, and Lemma 5, we have

Theorem 2. If $f(z) \in M_{\alpha}$ with $\alpha \geq 1$, then

$$(2.12) |f'(z)| \le \frac{K(\alpha, r)}{r} \left\{ \frac{r \log \left\{ \frac{(1+r)^{2(1-\gamma(\alpha))}}{r} K(\alpha, r) \right\}}{(1-r) \log \left(\frac{1+r}{1-r} \right)} + 1 \right\}$$

for |z| = r < 1, where $K(\alpha, r)$ is given by (2.5) and

(2.13)
$$\gamma(\alpha) = \begin{cases} \frac{(\alpha-1)/\alpha-1}{2(1-2^{1-(\alpha-1)/\alpha})} & (1 \le \alpha < \infty) \\ \frac{1}{2\log 2} & (\alpha = \infty). \end{cases}$$

Proof. In view of Lemma 2 and Lemma 3, we have $f(z) \in S^*(\gamma(\alpha))$, where $\gamma(\alpha)$ is defined by (2.13). Therefore, Lemma 4 and Lemma 5 imply the inequality (2.12).

With the aid of Lemma 6, we have

Theorem 3. If $f(z) \in M_{\alpha}$ with $0 \le \alpha < 1$, then

(2.14)
$$Re\left\{\frac{zf'(z)}{f(z)}\right\} \ge \frac{r^2 - 1}{r}K(\alpha, -r)$$

and

(2.15)
$$Re\left\{\frac{zf'(z)}{f(z)}\right\} \le \frac{1+r}{1-r} + \frac{2r\log\left\{\frac{(1-r)^2}{r}K(\alpha,r)\right\}}{(1-r^2)\log\left(\frac{1+r}{1-r}\right)}$$

for |z| = r < 1, where $K(\alpha, r)$ is given by (2.5).

Proof. Applying Lemma 1, Lemma 4, and Lemma 6 when $\alpha = 0$, we can easily show the inequalities (2.14) and (2.15).

Finally, we prove

Theorem 4. If $f(z) \in M_{\alpha}$ with $\alpha \geq 1$, then

$$(2.16)Re\left\{\frac{zf'(z)}{f(z)}\right\} \ge \gamma(\alpha) + (1 - \gamma(\alpha))\frac{1 - r^2}{r^{1/(1 - \gamma(\alpha))}}(-K(\alpha, -r))^{1/(1 - \gamma(\alpha))})$$

and

$$(2.17) \left\{ \frac{zf'(z)}{f(z)} \right\} \le \frac{1 + (1 - 2\gamma(\alpha))r}{1 - r} + \frac{2r \log\left\{ \frac{(1 - r)^{2(1 - \gamma(\alpha))}}{r} K(\alpha, r) \right\}}{(1 - r^2) \log\left(\frac{1 + r}{1 - r} \right)}$$

for |z| = r < 1, where $K(\alpha, r)$ and $\gamma(\alpha)$ are defined by (2.5) and (2.13), respectively.

Proof. Combining Lemma 2, Lemma 3, Lemma 4, and Lemma 6, we can prove the inequalities (2.16) and (2.17).

References

- T. H. MacGregor, A subordination for convex functions of order α, J. London Math. Soc. (2)9(1975), 530-536.
- [2] S. S. Miller, Distortion properties of alpha-starlike functions, Proc. Amer. Math. Soc. 38(1973), 311-318.
- [3] S. S. Miller, P. T. Mocanu and M. O. Reade, All α- convex functions are univalent and starlike, Proc. Amer. Math. Soc. 37(1973), 553-554.
- [4] P. T. Mocanu, Une propriete de convexite generalisee dans la theorie de la representation conforme, Mathematica (Cluj) 11(34)(1969), 127-133.
- [5] P. T. Mocanu and M. O. Reade, On generalized convexity in conformal mappings, Rev. Roumaine Math. Pures Appl. 16(1971), 1541-1544.
- [6] S. Owa and H. M. Srivastava, Some inequalities for starlike and convex functions of order α, Univ. of Victoria Report No. DM-363-IR, 1985, 1-8.
- [7] K. Sakaguchi and S. Fukui, On alpha-starlike functions and related functions, Bull. Nara Univ. Educ. 28(1979), 5-12.
- [8] V. Singh, Bounds on the curvature of level lines under certain classes of univalent and locally univalent mappings, Indian J. Pure Appl. Math. 10 (1979), 129-144.

Institute of Mathematics, Academia Sinica, Nankang, Taipei 11529, Taiwan, Republic of China.

Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577, Japan.