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DISTORTION THEOREMS FOR
ALPHA-STARLIKE FUNCTIONS

Ming-Po Chen and Shigeyoshi Owa

The object of the present paper is to prove some interesting distortion
theorems for alpha-starlike functions

1. Introduction

Let A denote the class of functions of the form

(1.1) flz)=24) a,z"
n=2
which are analytic in the unit disk U = {z : |z| < 1}.
A function f(z) belonging to A is said to be starlike of order a if and
only if '
zf'(z)

(1.2) Re{ )

for some a(0 < a < 1), and for all z € U. We denote by S*(a) the
subclass of A consisting of functions which are starlike of order « in the
unit disk U. Note that S*(a) C S*(0)=S*for0 < a < 1.

A function f(z) belonging to A is said to be convex of order « if and

only if )
(1.3) Re{l + )

for some a(0 < @ < 1), and for all 2 € U. Also we denote by K(a) the
subclass of A consisting of such functions. We note that K(a) C K(0) =
K for 0 € a <1, and that K(a) C S*(a) for 0 < a < 1.

} > a

} >«
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Let « be real and suppose that f(z) belongs to A. If f(z) satisfies

f(2) +"(2)
(1.4) Re{(1 — a) ) + a1l + 2)
for some a(—o00 < a < o0), and for all z € U, then f(z) is said to be
a-starlike in the unit disk U. We let the class of functions which are
a-starlike in the unit disk U be denoted by M,.

The class M, was first introduced by Mocanu [4], and was studied
by Mocanu and Reade [5], Miller, Mocanu and Reade [3], Miller [2], and
Sakaguchi and Fukui [7].

)} >0

2. Distortion Theorems

In order to prove some distortion theorems for functions belonging to
M., we have to recall here the following lemmas.

Lemma 1 ([7]). If f(z) € M, with 0 < a < 1, then f(z) € S*. If
f(2) € M, with a > 1, then f(z) € K.

Lemma 2 ([1]). If f(z) € K(a), then f(z) € S*(B(a)), where
_2a-1__ (o4 1
. o [T (24D

2log 2 24T

Lemma 3. If f(2) € M, with a > 1, then f(z) € K(%2).

Proof. By using Lemma 1 and Lemma 2, we note that if f(z) € M, with
a > 1, then f(z) € K C 5%(3), that is, that

(2.2) Re{zj{(f(:i)} > % (z € V).
Therefore, from (1.4), we have

z2f"(2) a-—1 zf'(z) a—1
(2.3) Re{l + ) }>( 5 )Re{ ) } > e

which implies f(z) € K(%2}).
Lemma 4 ([2]). If f(z) € M, with a > 0, then for |z| = r < 1 we have

(2.4) = K(a,-r) <|f(2)| < K(e,r1),
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where -
=i 1/a=171 _ —2fad a_
(2.5) K(ayr) = {= [ o1 = ) dp)

Equality holds in both cases for the function

(26) fg(a, Z) = {_(]i. -[: Cl/a—!(l = Ceia)—?/adc}“'

Lemma 5 ([6]). If f(z) € S*(a) with0 < a < 1, then for |z] =r < 1 we

have
2f'(z), _ rlog {7 ¢(5)])
(2.7) If(z) | < 1= r)log CE) +1.

Equality in (2.7) holds true for the function f(z) = z/(1 — 2)*1=2) with

zZ=Tr.

Lemma 6 ([8]). f(z) € S*(a) with 0 < a < 1, then for |z| =7 < 1 we

have

e9) Rl D)z ar -l

and —_ }
2f'(z), _14(1—2a)r  2rlog {U=24=2¢(z))

28) Betpyis=——; 1= log ()

For the functions f(z) belonging to M,, Miller [2] gave the following
conjecture.

Conjecture. If f(z) € M, with @ > 0, then
(2.10) (0/0r)K (a,—r) < |f'(2)| < (8/8r)K (e, 1),

where K(a,r) is given by (2.5).
Furthermore, Miller [2] proved the above conjecture for a > 1. Now,
we prove

Theorem 1. If f(z) € My with0 < a < 1, then

K(a r) rlog{w)—h(a r)}
e

for |z| =r < 1, where K(a,r) s given by (2.5). Equality in (2.11) holds
true for the function f(z) = z/(1 — 2z)*=®) with z = r.

(2.11) If'(z)] <
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Proof. Note that Lemma 1 gives f(z) € S* for functions f(z) belonging
to M, with 0 < @ < 1. Applying Lemma 5 when a = 0 and Lemma 4, we
can show the inequality (2.11).

Combining Lemma 2, Lemma 3, Lemma 4, and Lemma 5, we have
Theorem 2. If f(z) € M, with o > 1, then

rbgﬁﬁf¥ifﬁmwn+4}
(1 —7)log (1£2)

(212)  Iff(e) <TI0y

for |z| =r < 1, where K(a,r) is given by (2.5) and

a=1)/a=1
—(—H—_ sy (1 £ a < oo)
(2.13) vh)={“a” Sl

2log 2 ((1 = )

Proof. In view of Lemma 2 and Lemma 3, we have f(z) € S*(y(a)), where
v(e) is defined by (2.13). Therefore, Lemma 4 and Lemma 5 imply the
inequality (2.12).

With the aid of Lemma 6, we have
Theorem 3. If f(z) € M, with0 < a < 1, then

zf'(z) r?—1
(2.14) Re{ e } 2 . K(a,—r)

and

(2.15) Re{z}t(,

(z)} 14T 2rlog {="L K (a,r)}

z) " " 1—-r (1—r?)log (3X)

for |z| = r < 1, where K(a,r) is given by (2.5).

Proof. Applying Lemma 1, Lemma 4, and Lemma 6 when a = 0, we can

easily show the inequalities (2.14) and (2.15).

Finally, we prove
Theorem 4. If f(z) € M, with a > 1, then

o BT o w3
(2-16)Re{‘f((“)} > 4(e) + 1.~ 7(a)),,,—}“—_—f,}a—,,(—ff(a, el

/()
and
(217) {Zf'(z) 1 +(1 —2’7(0:))7‘ QTIOg{MM["(Q,T)}

1S 1-r (1= %) log ()
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for |z| = r < 1, where K(a,r) and y(a) are defined by (2.5) and (2.13),

respectively.

Proof. Combining Lemma 2, Lemma 3, Lemma 4, and Lemma 6, we can
prove the inequalities (2.16) and (2.17).
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