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AN INVENTORY MODEL AND ITS 
OPTIMIZATION 

Eui Yong Lee and Won J . Park 

An inventory model with constant demand of rate μ(μ > 0) is consid 
ered. The inventory is replenished up to ß by a deliveryman who arrives 
according to a Poisson process of rate À, only if the stock docs not exceed 
a thresho ld 0' (0 :S a :S ß) . The distribution function of X(t) , the stock 
at time t , is deduced from a partial differentia l equation , two interesti ng 
characteri st ics, the fìr st passage t ime to statc 0 and the probability t hat 
the stock exceeds a ccrtain levcl during a given intcrval , are considcred , 
the stat iona ry di str ibution is obtained morc explicitly, a nd an optimal 
policy with respect to the threshold a is studied 

1. Introduction 

In this paper, aJ1 inventory modcl is introduced. Consider an inventory 
whose stock is initially ß, t hereafter decreases linearly at rate μ， μ > 0, and 
rcmains at 0 if the inventory bcco ll1cs e ll1 pty. The inventory is replen ished 
by a deliverY ll1an who arr‘ ives at t he invcntory according to a Poisson 
process of rate λ Jf the level of thc invcntory exceeds a threshold a , 
o :S 0' :S ß, he docs nothing, otherwise hc instantaneously increases the 
level of the inventory up to β 

Baxter and Lee [1] introduced a sill1 ilar invcntory mode l where the size 
of a delivcry is a random variable Y such that Y :::: a almost surely. 1n the 
paper, they derivcd a Laplace-St ieltjes transfonn of the distribution func­
tion of the level of t he invento ry at time t and considerecl the stationary 
case where thc distribution fun ction docs not depend on t ime t 

Since the inventory is rep lenis hcd up to ß in our model rather than by 
a rando ll1 amount (β may be considered as thc capacity of the inventory) , 
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the points where the restockings occur form a renewal process, and thi s 
fact enables us to obtain the distribution fun ction of the level of the in­
ventory at time t direct ly and to study the stationary case more explicitly 
We furt her consider two interesting characteristics of the model, the first 
passage time to state 0 and the probability that the stock exceeds a cer­
tain level during a given interval. We also show that there exists a unique 
optimal policy with respect to the threshold Q , after assigning costs to the 
inventory 

2. The Distribution Function 

Let X(t) be the level of the Inventory at tlmdistribution [unction of X(t)- We an have the [이lowing thrce mutually 

exclusive events during the small interval (t , t + 8t) 
(a) The deliveryman does not come, then 

X(t + 8t) = I ;(t) - μ8t almost surely if X(t) > μ8t 
lO almost surely if X(t) ~ μ81 

(b) The deliveryman comes but does nothing since X(t) > Q , then 

X(t + 8t) = X(t) - μ81 almost surely 

(c) The deliveryman comes and makes a deli very since X(t) ~ Q then 

X(t + 8t) = ß - μ8t almost surely 

Thus, for 0 ~ x < ß, 

F(x ,t+ 8t) = (1- 'x 8t)F(x+ μ81 ， t ) + 'x8tP{X(t ) ~ x + μ 8t ， 

X(t) > Q} + 'x8tJ {x 즈 ß - μ8t}F(Q， t ) + 0(81) , 

where IA denotes the ind icator of event A. Now 

F(x+ μ8t， t)=F(떼)+ μ8t옳F(x ， t) + 0(81) 

on performing a Taylor series expansion, assuming that 옳F(x ， t) exists 
Substituting this expression into t he above cquat ion, subtracting F(x , t) 
from each side of the equation , dividing by 8t , and letting 8t • 0, we have 
the following partial di fferenti al equat ion 

옮F(x ， t) = μ옳 F(x ,t)- 'x F(x^Q ,t) , for O ~x<ß. (2.1) 
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Since the level of the inventory cannot exceed ß, F(ß , t) = 1 for t > 0 
Before we solve the equation (2.1) , we first derive a fo야rmu뼈l 

which can be used as a bou띠Jn띠da따ry condition. 

Lemma 2.1. Jf we ignore the βrst p따sage tlme to a , i.e 딴， then 

F(a ,t) = e-.\' + l' e-.\('-빠)du ， 

where h(t) = ε풍 1 g(n)(t) and g(t) = Àe-시，-략으 
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Proof Notice that the points where the stock of the inventory reaches a 
from an embedded renewal process. Let T* be the time between successive 
renewals. Then 

where T is an exponential random variable with parameter À. The prob­
ability density function of T* , g(t) say, is given by 

g(t) = Àe-.\(' 얻으 for t > i!...二으 
μ 

Let h(t) denote the renewal density function of the embedded renewal 
process, that is, h(t) = ε풍1 g(n)(t) , where the superscript denotes n-fold 
recursive convolution 

Now , notice that F( a , t) = 1 if the deliveryman has not arrived until 
time t or if there is a renewal in the embedded renewal process at u E (0, tJ 
and the deliveryman does not arrive in the interval [u , tJ. Hence 

F(띠) = e-.\' + l' e-.\('-빠)dμ 

Now , the equation (2.1) can be divided into the following two equa­
t lOns: 

and 

효F(x ， t) = μ프F(x ， t) - ÀF(x , t) , for O :'Õ x < a , 8t - \-, -, r 8x 

$F(1, t) = μ옳F(x ， t) - ÀF씨， ιr a :'Õ x<ß 

Applying F(a , t) obtained in Lemma 2.1 to both equations as a boundary 
condition and solving the partial differe띠al equations for F(x , t) by an 
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argument similar to that of Colton [2, p.6-11 ], we see that 

F(x , t) F(a, t + E二으)e^(X-")/μfor 0 ~ x < 0:, 
μ 

•- ，ν À rx 'l'" _ 1. 

F( 0:, t 十 二二)+ 二 I F( o: ,t + =-二 )du ，
μ μ “@ μ 

and 

F(x , t) for 0: ~ X < β， 

where F(띠) is g iven in Lemma 2.1 

3. The First Passage Time to State 0 

Define To = inf{t IX(t) = O} , the fir st passage tμIIT뼈T 
}η'1 ， Y2, ... , YN be the sequence of the amounts of the deliveries made by 
the deliveryman , before the stock reaches state 0, then 

}4 딛ß- o: + μT， i = 1,2, . .. , N, 

under the condition that T , the exponential random variable with param­
eter A, Is less than f ‘ and so the distribution fun ct ion of κ ， D(y) say, is 
given by 
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Further, 

P(N = n) = e-씨/μ( 1 - e-"^/μ )n ， n = 0,1,2, 

Now, observed that 낀o satisfìes the following relation 

N 

E딛(ß + εκ) 
F ‘=0 

and hence the distribution function of 때， L(t) say, is given by 

L(l) = ε D(이(μt - β)e-"λ/μ (l-e-"^/μr ， 
n=O 

where D(n) is the n-fo ld rec llrsive Stieltjes convolutioll of D , D(O) being 
the Heaviside functioll. [t can be also shown that 

E(To) = 딴eaA/l + i(eaA/h 1) 
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4. The Probability That the Stock Exceeds a Given 
Level 

We now derive an expression for πx(I 1， 1 2 ) = P{X(t) > x , for all 
t E [t" t2]} . Since the result is trivial if x 즈 a , we consider only the 
case when x < α Observe that X(t) > x for.all t E [1

" 
써 if and only 

if X(ld > x and the first passage tirne frorn X(t ,) to x is greater than 
12 - 1,. Let Sγx denote the first passage tirne frorn state y to state x , 
then 

πx( 1, , 12 ) P {X (t ,) > x , S X (t d - x > t2 - I,} 
rβ 

= I P{Sy_x > t2 - t , jX(t,) = y}dF(y ,I,) 

by conditioning on X(t ,). Let L￥ (t) denote the distribution function of 
Sy_x . By an argument si mi lar to that of the previous section , it can be 
shown that 

LW) = D(O)(μ t + x - y)e->'((α^y ) - x)/μ 
。。

+ ε D1n )(μ t +x- ν)(1 - e->'((O^y)-x)/μ) 
n=l 

e->'(<>-x)/μ(1 - e->'(o-x)/μ)← 

where 
( 0, for ν <ß- a 
j • -Å( Y← 8+0、 l

Dx(ν) = ~ 늑그=1rZ;17τ ， for ß - a < y ~ ß - x 
l 1, for y > ß - x 

Sumrnarizing the foregoing , we see that 

r ß 
자(1 ，， 1 2)= / L~(t2 -t ， )dF(ν ， t ,) 

않
 

C 

때
 

와
 

4 ‘ Q 
u e 

돼
 

F J 

1n this section , we consider the case where the distribution function 
of X(t) does not depend on tirne t , that is, åF(x , t)jåt = O. Notice that 
this stationary distribution is the sarne as the equilibriurn distribution 
F(x) = lirn←∞ F(x , t) (c. f. Baxter and Lee [1]). 
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From the equation (2 .1 ), it follows that 

μ옳F(x) - 싸) = 0, for 0 ~ x < 0 (5 .1 ) 

μ끓F(x) - >'F(o) = 0, “r o~x< β (5.2) 

Applying the key renewal theorem to F(o ,t) obtained in Lemma 2.1 , 
we see that 

F (Q) = ---E 
>.(ß - 0) ’ 

(5.3) 

Hence, solving the equations (5.1) and (5.2) with the boundary condi t ion 
given by the equation (5.3) , we obtain 

F(x) 
μe>'(r-o)/μ 

μ + >.( ß - 0) ’ 
for 0 으 X < Q , and 

F (x) 
μ - 0>. + >.x 
μ + >.(ß - 0) ’ 

for o~x <ß 

From the above stationary di stribution, it can be also shown that the 
average level of the inventory over an infìnite horizon is given by 

L--Iaμ + 신칸二호) μ2( 1 _ e-o >，/μ)/시· 
μ + >.( ß - 0) 

6. The Optimal Policy with Respect to a 

1n this section, we show that there ex:ists a unique 0 whicb m.inim.izes 
the average cost per unit time over an infìnite horizon , after assigning costs 
to the inventory, the cost per unit time of the inventory being empty, C, 
say, and the ∞st of keeping a unit per unit time, C2 say. 

To calculate C(o) , the average ∞st per unit time over an infìnite hori­
zon , we defìne as a cycle the interval between two successive points where 
the inventory is replenished up to β Notice again that the sequence of 
such points forms an embedded renewal proc얹s. The duration of a generic 
interval is denoted T* ‘ It can be shown that the total ∞st during a cycle 
is given by 

r ({J-o)/μ+T 

'2 I (ß- μx)dx ， if T < 0/μ ， 

C,(T - 0/μ) + C2앓， otherwise, 
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where T is an exponential random variable with parameter À. Hence, the 
expected total cost in a cycle can be obtained by conditioning on T , 

ê(a) = C, 뿔(t - a/μ)Àe->"dt 
'''/μ ， (13- ，，)/μ+ ， ‘ ,ß 82 

“ +C2 I I (ß- μx)dxÀe-A'dt + C2 I 등-Àe-A'dt 
Jo Jo J，，/~ ιμ 

= C, e-">'/μ/ À + C2 (칸 얀 + g + te aA/μ - ;?) 
2μ2μ À ' À2 

Since C(a) = C(a)/E(T") and E(T*) = ((ß-a)/μ + 1/ À) , it follows that 

C(Q) = ---L--[Clμe-">'/μ+C2 (β2À2_a2 À2+2aμÀ+2μ2 e-">'/μ-2μ2)/2시 (ß - a )À + μ 

Theorem 6.1. If C, ~ C2ß/2 , then C(a) is minimized at a = 0, if 
C, ;::: C2μ ( e>.ß/μ - 1)/À, then C(a) is minimized at a = β， otherwise, 
there exists a unique a" , 0 < a " < ß, which minimized C( a). 

ProoJ First, C’(a) is given by 

C'(a) = f 
- À(ß - a) 

2[( C,À + μC2 )e-">'/μ + C2aÀ/2 - C2ßÀ/2 - C2μl a)À + μ) 

-À(ß - a) 
←「τ[A ， (a) - A2(a)J, 

whereA,(a) = (C,À + C2μ)e-">'/μ and 

A2(a) = -C2a À/2 + C2ßÀ/2 + C2μ. 

Notice that A,(a) is an exponential fun ct ion of a and A2(a) is a linear 
function of a. There are three cases to consider : 
(i) when C, ~ C2 ß/2. 

Since A)(O) ~ A2(0) and A)(ß) ~ A2(ß) , A ,(a) ~ A2(a) , for all 
o ~ a ~ ß. Thus C’(a) 즈 0, for all 0 :s a :S ß 
(ii) when C2 ß/2 < C) < C2μ(e>'β/μ - 1)/ À 

Since A) (0) > A2(0) and A,(ß) < A2(ß) , there exists a unique a" , 0 < 
a" < ß, which satisfies that C'(a) = 0, and C(a) is rninirnized at t his a". 
(iii) when C1 즈 C2μ( e>.ß/μ - 1 )/λ 
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For any 0 ~ 0 ~ β， 

A,(o) = (.ÀC1 + C2μ )e-<>>'/μ 
> C2μe).(ß-o)/μ 

from the condition that C 1 즈 C2μ ( e쩌/μ - 1)/).. 

> C2μ (>.(ß - 0)/μ + 1) 
Since eX 

즈 x + 1 for x E R 
= -C2o ).. + C2 ß).. + C2μ 

~ -C2o)../2 + C2ß )../2 + C2μ 
= A2(O) 

Thus C '(o) ~ 0, for all 0 ~ 0 ~ ß 
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