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AN INVENTORY MODEL AND ITS
OPTIMIZATION

Eui Yong Lee and Won J. Park

An inventory model with constant demand of rate p(x > 0) is consid-
ered. The inventory is replenished up to 8 by a deliveryman who arrives
according to a Poisson process of rate A, only if the stock does not exceed
a threshold a(0 < a < #). The distribution function of X (), the stock
at time t, is deduced from a partial differential equation, two interesting
characteristics, the first passage time to state 0 and the probability that
the stock exceeds a certain level during a given interval, are considered,
the stationary distribution is obtained more explicitly, and an optimal
policy with respect to the threshold « is studied.

1. Introduction

In this paper, an inventory model is introduced. Consider an inventory
whose stock is initially 3, thereafter decreases linearly at rate g, p > 0, and
remains at 0 if the inventory becomes empty. The inventory is replenished
by a deliveryman who arrives at the inventory according to a Poisson
process of rate A. If the level of the inventory exceeds a threshold a,
0 < a < 3, he does nothing, otherwise he instantaneously increases the
level of the inventory up to 3.

Baxter and Lee [1] introduced a similar inventory model where the size
of a delivery is a random variable Y such that Y > a almost surely. In the
paper, they derived a Laplace-Stieltjes transform of the distribution func-
tion of the level of the inventory at time ¢ and considered the stationary
case where the distribution function does not depend on time t.

Since the inventory is replenished up to 3 in our model rather than by
a random amount (3 may be considered as the capacity of the inventory),

Received September 3, 1990.

143



144 Eui Yong Lee and Won J. Park

the points where the restockings occur form a renewal process, and this
fact enables us to obtain the distribution function of the level of the in-
ventory at time ¢ directly and to study the stationary case more explicitly.
We further consider two interesting characteristics of the model, the first
passage time to state 0 and the probability that the stock exceeds a cer-
tain level during a given interval. We also show that there exists a unique
optimal policy with respect to the threshold a, after assigning costs to the
inventory. ’

2. The Distribution Function

Let X(¢) be the level of the inventory at time { and F(z,t) be the
distribution function of X(¢). We can have the following three mutually
exclusive events during the small interval (1,1 + 6t):

(a) The deliveryman does not come, then
[ X(t) — pét  almost surely if X () > pét
AL+ 6t) = {0 almost surely if X (¢) < uét.

(b) The deliveryman comes but does nothing since X(¢) > a, then
X(t+6t) = X(t) — ubt almost surely.
(c) The deliveryman comes and makes a delivery since X(¢) < a then
X(t+6t) =p — pét almost surely.
Thus, for 0 < z < 3,

F(z,t+6t) = (1= A6t)F(z + pbt,t) + AtP{X(t) < z + uét,
X(t) > a} + Motl{z > 8 — ubt} F(a,t) + o(ét),

where I4 denotes the indicator of event A. Now

d
F(z + pét,t) = F(z,t) + pétaF(z‘,t) + o(ét)
on performing a Taylor series expansion, assuming that %F(.’I,t) exists.
Substituting this expression into the above equation, subtracting F(z,t)
from each side of the equation, dividing by ét, and letting 6t — 0, we have
the following partial differential equation:
5}

J .
EF(m,t)=pal*(:c,t)—,\F(:r/\o,t), for D€ o f. (2.1)
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Since the level of the inventory cannot exceed 3, F(f,t) =1 for t > 0.
Before we solve the equation (2.1), we first derive a formula for F(a,t),
which can be used as a boundary condition.

Lemma 2.1. If we ignore the first passage time to «, i.e. ﬁ%, then
¢
Pla,t) =e 4 j e~ Mt=9) b)) du,
0

where h(t) = $.52, g™(t) and g(t) = Ae =5,
Proof. Notice that the points where the stock of the inventory reaches o
from an embedded renewal process. Let 7™ be the time between successive
renewals. Then

f—a

T =T+ :
7

where T is an exponential random variable with parameter A\. The prob-
ability density function of T, g(t) say, is given by

gl(t) = Ae_)\(t_p;_a), for &3> g g

I

Let h(t) denote the renewal density function of the embedded renewal
process, that is, h(t) = 322, ¢™(t), where the superscript denotes n-fold
recursive convolution.

Now, notice that F(e,t) = 1 if the deliveryman has not arrived until
time ¢ or if there is a renewal in the embedded renewal process at u € (0,1]
and the deliveryman does not arrive in the interval [u,t]. Hence

t
Fla,t) = e~ 4 / e~ =) (3 s,
0

Now, the equation (2.1) can be divided into the following two equa-
tions:

a d
aF(x,t) = pEI;F(J:,t) — AF(z,t), for 0<z<a,

and

a o
aF(a:,t) = Juﬁ—:‘:F(:,t:,t) — AF(a,t), for a<z<§p.

Applying F(a,t) obtained in Lemma 2.1 to both equations as a boundary
condition and solving the partial differential equations for F(z,t) by an
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argument similar to that of Colton (2, p.6-11], we see that

r—«

Flz,t) = F(o,t+ )erE=u - for 0<zr<a, and

T —
H

r—o

F(z,t) = F(a,t+ u)du, for a<z<§p,

X T
)'l"_'] F(Q,t+
M Ja

where F(a,t) is given in Lemma 2.1.

3. The First Passage Time to State 0

Define Ty = inf{t|X(t) = 0}, the first passage time to state 0. Let
Y1,Y2,---, Yy be the sequence of the amounts of the deliveries made by
the deliveryman, before the stock reaches state 0, then

Kgﬁ—a'}'ﬂT! i=1,2,"',N,

under the condition that 7', the exponential random variable with param-
eter A, is less than = and so the distribution function of Y¥;, D(y) say, is
given by

D(y) = P(B—a+uT <y|T <>)
7
0, . fory<pf—a
= {1—:21-_!‘::‘”:““’ forf—a<y<p
1. for y > f3.

Further,

P(N =n)=e M1 —eMe)" n=0,1,2,---

Now, observed that Tj satisfies the following relation :

pl 4
To=—(B8 + E Yi)

H i=0
and hence the distribution function of Tj, L(t) say, is given by

L(t) = Y D™(ut — Ble *Mr(1 — e~oM¥)®,
n=0

where D™ is the n-fold recursive Stieltjes convolution of D, D) being
the Heaviside function. It can be also shown that

E(Ty) = B=a e + l(ef"‘/“ = 1)
It A
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4. The Probability That the Stock Exceeds a Given
Level

We now derive an expression for m,(t1,t;) = P{X(t) > =z, for all
t € [ti,t2]}. Since the result is trivial if # > «, we consider only the
case when z < a. Observe that X(t) > z for all ¢ € [t;,1,] if and only
if X(t;) > z and the first passage time from X(¢,) to z is greater than
t, —t;. Let S,_, denote the first passage time from state y to state z,
then

Wl.(t],tg) = P{X(tl)>:L,SX“1]—$>t2—t1}

B
s /P{Sy_x>t2—t,|X(t1):y}dF(y,t-1)

by conditioning on X (t;). Let LY(¢) denote the distribution function of
Sy—z. By an argument similar to that of the previous section, it can be
shown that

Lg(i) = D(U)(ﬂ.t e g y)e‘*“”"y)—w}/#ﬂ

o]
+ Z D.(rn)(ﬂt + 2=yl — eﬁJ‘((“""y)“r)/u)

n=1
e—)\(a—m}/p(l _ B—A(a—r)/#)n—l 3

where

—e—My—B+a)/n
llie—Aa—Ip’ forﬂ_a<ygﬂ_1'

1, fory > g —z.

Summarizing the foregoing, we see that

0, fory < -«
D:v(y):{

A
ma(tits) = [ L(ts — t)dF(y, 1)

5. The Stationary Case

In this section, we consider the case where the distribution function
of X(t) does not depend on time t, that is, 0F(z,t)/dt = 0. Notice that
this stationary distribution is the same as the equilibrium distribution
F(z) = limyo F(z,t) (cf. Baxter and Lee [1)).
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From the equation (2.1), it follows that

'udia:F(x) —AF(z) =0, for 0L<z<a (5.1)
p%F(m) —AF(a)=0, for a<z<p (5.2)

Applying the key renewal theorem to F(a,t) obtained in Lemma 2.1,
we see that '

M

Hence, solving the equations (5.1) and (5.2) with the boundary condition
given by the equation (5.3), we obtain

F( g B G d
x ————, for 0<z<a, an
RV

pu—al+ Az
F(z) = ————, for a<z<p.
®) = wE-

From the above stationary distribution, it can be also shown that the
average level of the inventory over an infinite horizon is given by

I A(B? - a?)

m[a# % 5 — i (1 — e™M¥)/A.

6. The Optimal Policy with Respect to «

In this section, we show that there exists a unique a which minimizes
the average cost per unit time over an infinite horizon, after assigning costs
to the inventory, the cost per unit time of the inventory being empty, C;
say, and the cost of keeping a unit per unit time, C, say.

To calculate C(a), the average cost per unit time over an infinite hori-
zon, we define as a cycle the interval between two successive points where
the inventory is replenished up to . Notice again that the sequence of
such points forms an embedded renewal process. The duration of a generic
interval is denoted 7. It can be shown that the total cost during a cycle
is given by

(B — pz)dz, if T <alp,

(B—a)/u+T
3

2
Ci(T — afu) + ng—, otherwise,
m
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where T' is an exponential random variable with parameter A. Hence, the
expected total cost in a cycle can be obtained by conditioning on T,

éla) = C /T(t—a/p))\e_’“dt

afu p(B—a)/ptt
T “(ﬂ—wwﬂemﬂ+cf 2 romi
[u ,u.

2 2
_ —a)«/# ﬁ_ _ a_ L emaMu _ 2

Since C(a) = C(a)/E(T*) and E(T*) = ((8—a)/u+1/)), it follows that

1

C(Cr) = m[Clye““'\/"+Cg(ﬁ2,\2—02/\2+20p/\+2p26_°’)‘/"~2p2)/2A],

Theorem 6.1. If C; < Cy8/2, then C(a) is minimized at o = 0, if
Cy > Cop(e/* — 1)/, then C(a) is minimized at a = J, otherwise,
there ezists a unique o, 0 < o* < B, which minimized C(a).

Proof. First, C'(a) is given by

"o -AB—a) . e~ oMu & — =
I ) RN
= ((ﬂ _ (X))\ & #)2[A1( ) AZ( )]1

whereA;(a) = (CiA+ Cop)e™*M*  and
Ay(a) = —Cra)/2+ CfA[2+ Cap.

Notice that A;(a) is an exponential function of @ and A,(a) is a linear
function of a. There are three cases to consider :
(i) when Cy < Cy8/2.

Since A;1(0) < Ay(0) and A;(B) < Ax(f), Ai(a) < Az(a), for all
0<a<p Thus C'(a) > 0,forall 0 < a < f.
(ii) when C/2 < Cy < Cou(e/* —1)/A.

Since A;(0) > A2(0) and A,(B) < Az(B), there exists a unique a*,0 <
a* < B, which satisfies that C'(a) = 0, and C(«) is minimized at this .
(iii) when C; > Copu(e?/* —1)/A.
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For any 0 < a < 3,

A@) = (ACy + Cap)e™Mw

nge“”“"“‘

from the condition that C; > Cou(e™/* —1)/A
Copt(A(B — @)/ +1)
Sincee* >z +1forz € R

—Coa) + CyffA + Cop

—Cal ]2 4+ CyB8A[2 + Cap

Ag(a).

v

IV

v

Il

Thus C'(a) <0, forall 0 < a < j.
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