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Abstract

In this paper we first present the elements of the theory of families of distributions and corresponding
estimators having structual properties which are preserved under certain groups of transformations,
called “Invariance Principle”.

The invariance principle is an intuitively appealing decision principle which is frequently used,
even in classical statistics. It is interesting not only in its own right, but also because of its strong
relationship with several other proposal approaches to statistics, including the fiducial inference of
Fisher [3, 4], the structural inference of Fraser [5), and the use of noninformative priors of Jeffreys
[6]. Unfortunately, a space precludes the discussion of fiducial inference and structural inference.
Many of the key ideas in these approaches will, however, be brought out in the discussion of invarience
and its relationship to the use of noninformatives priors,

This principle is also applied to the problem of finding the best scale invariant estimator in the

scale parameter problem. Finally, several examples are subsequently given.

1. Introduction

The invariance principle involves groups of transformations over the following three spaces :
the parameter space ®, the decision space A and the sample space X. The most basic is the group
of transformations of X onto X, that is, if for every x;€X there exists an x,€X such that g(x,)
=X;. A transformation g from X into itself is to be one—to—one if g(x;)=g(x,) implies x;=x,.

Let G denote a group of measurable transformations from X into itself. The basic group operation
is composition : if g, and g, are transformations from X; into itself, gy.g; is defined as the transformation
x—>g(g;(x)), x€X. A set of transformations on a space is a group if it is closed under composition
operator - which is associative and inverse, and has the identity e. The inverse of a transformation
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g exist if and only if g one—to—one and onto, Hence all transformations in G are automatically
one—to—one and onto. The assumption g€ G be measurable is made into ensure that whenever
X is a random variable in X, then g(x) is also a random variable. Comprehensive. treatment can
be found in the books of Ferguson [2], Berger [1], and Lehmann [8].

The purpose of this paper is to study some basic results for invariant estimation in the scale
parameter problem.

In section 2 we treat some definitions and preliminary results containing a group of measurable
transformations.

In section 3 we obtain best invariant estimators for the scale parameter in the one dimensional
case as well as the n-—dimensional case, and treat the best scale invariant estimator (Pitman’s
estimator) as a special case. Finally, section 4 contains sevral examples for the results of Section
3

2. Preliminaries

Definition 2.1. Let X be any non—empty set,
G is a group of (measurable) transformation on X if
i) geG=g is a one to one and onto function from X to X ;

ii ) the identity function e(x)=x for all x belongs to G

iii) geGg71eG

iv) g2€G, heGg-heG where

(geh)(x)=gh(x)=g-h(x)=g(h(x})

Let {PX : 0€ 8} be the family of distributions of X taking on values in X with the corresponding
Borel field 8. Assume that 8,+6, implies Py +P (ldentifiability). Suppose G is a group of transformations
on X such that

i) if geG, then g is a measurable function from (X, ) to (X, ¥). (Note that since g~'€G
and is measuarable we see that g is bimeasurable,)

ii) if geG, then P e {Pg*: 0’ € 8} where P*(B)=Py(gX€B), Be®, (Such a 6 is unique

by identifiability) ’

ie, for every g€G and every € ® 3 unique 0'€¢ ® - 3 - the distribution of g(X) is given
by Py* whenever the distribution of X is given by Pp*. (For example, we start with a normal
problem, then it remains a normal problem under any transformation).
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When this happens, we say that G leaves the probability structure “invanant” ie, a family
of distributions Pg*, 6€ 8, on X is “invariant” under G,

For each geG let g be a function from ® into ® defined by P =Pgy =P¢X (Such a 6=
g0 is uniquely defined by g and 6).

Theorem 2.1. If the probability structure is invariant under G, then

Eg ¢ (gX)=Ep ¢ (X)
for all measurable function ¢ (integrable real function).

QOutline of Proof)
Let ¢=I3, Be® Next ¢ simple, nonnegative and take the limit. Finally, arbitrary

measurable function,

Theorem 2.2. If a family of distributions Pg*, 8¢ @, is invariant under G, then G is a group
of transformations on ® where
G=lg: geG.
Furthermore, gh=g-h, ie, g—g is a homomorphism, and hence e=e and g'=g".

Proof. To show gh=g-h :

Be®, P, (B)=P§*(B)
=Pp(gh(X) € B)
=Py(h(X) €g™(B))
=Py (g(B))
=Py (g7(B))
=Pro(X €g™(B))

Since this is true for all ¢ ® and Be®, we have gh==goh
To show g is onto @ :

e=gog ' De=gg =gog
6=e(0)=g(g7(0))=g(6%) where 6*=g7(6)

To show g is one to one:

2(8))=g(8,)=g" g(6)) =g g(6;)

=g7g(8,)=g"2(6,)
— 5§ —



4 Kuey ~Chung Choi

Se(6))=e(6,)
=0,=6,

These facts also show that G is closed under inverses and € is the identity in G, Now, we want
to estimate r(0) with {r(8) : 6€ 8}CD where D is decision space.

Definition 2.2. We say that G is invariant for the estimation of r(8)
if r(6,)=r(8,) implies r(g0,)=r(g6,) VgeT.

We assume that there exists a group of transformations G acting on D such that E(r(e))=r(§
(8)) y6€ ® and YgeG. Also, assume that g-»g is a map such that E';-w—-'g‘oﬁ for all g, heG.
Note that if D={r(8) :0€ @}, then such a G exists which satisfies gh=g-h.

Definition 2.3. An estimator ¢ is said to be invarant under G if
g0(X)=4(gX)
or 6(X)=g"'6(gX) VgeG, yX
Finally, we assume that the loss function is invariant under G, ie. L(e, d)=L(g0, 54) VgeG,
0c®, deD (d'=gd is unique). |

Definition 2.4. Two points 8; and 0, are equivalent under G if there exists a geG such that
§(91)=92.
(This breaks @ up into equivalent classes, call it “orbits™)

Theorem 23. Let 6 be an invariant estimator, then the risk function is constant along orbits
of G, ie,
R(p, 4)=R(gy, ¢) VgeG, Vge ®

Proof. R(g, ¢)=Egl.(g, ¢(X))
=EqL(gs, 26(X)) (" loss invariant)
=EqL (g8, 6(g(X)) ("' ¢ invariant)
= | L(gs, 4(g(X)))dP¥
=Egol.(29, 6(X)) (" Eg¢ (gX)=Ep¢ (X))
=R(gg, 4) VgeG, y0ec®
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3. Best Invariant Estimation in the Scale Parameter Problem

Let X be a real valued random variable with density fa(X), 8€ ®==((, oo), with respect to

some o—finite measure g,
Definition 3.1. ¢ is called a scale parameter if
fo(x) = for (5 ) = £(5)

for some known function f which vanishes unless x>0,
We wish to_estimate r(6)=0 under the loss

L(6, d)=L(<), deD=(0, )
G={gy : b>0}, gn(x)=bx, is a group.
X~fo(x)=5 forf(§ )= {(5), 0 @

gy (X)=bX=b0 - ‘)e(” ~—t—)1§-f(-§‘5 ), bBe®

gy0=bB=> there is only one orbit in ®
£(6;)=r(0;)=68,=0,=5bB; =b8,. \Yb>0
r(gph;) =r(gyH;)
£5(8)=8yr(8)=T(gy0)=1(b8) =bB=g,(8)==g;,(6; )==bb
. B(d)=bd
Here G=G=0
2.(6(x))=0(g(x)) Vx>0, Vc>0
e d(x)=d(g.(x)) Vx>0, V>0

Take c=1 /x::—)% 8(x)=6(1)

=d(x)=xd(1)= bx where b==¢(1)
L Gp(x)=bx Yb>0, Vx>0

Hence, every nonrandomized invariant estimator in of the form

8,(X)=bX W¥b>0
L(ge, gd)=L(g, d)

—T —
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R, 9)=EoL (9 )=E\L(bX)=R(1, d) V6, b>0
(8, has constant risk \Yb>0).

Suppose E;L(bX) exists and is finite for some b>0, and assume 3 b- € vExL(h,X)zi{go E,L
(bX). Then ¢(X)=byX is “best invariant™, Here, it should be remarked that if every nonrandomized
invariant estimator has constant risk, then the nonrandomized invariant estimators from an essentially
complete class among the class of all randomized invariant estimators,(Hence, in trying to find
a best invariant estimator, attention may be restricted to the nonrandomized estimators)

Now let X=(X, X3 -+, X,) be a random vector in R® with the density f3(X) with respect

to some o finite measure x, 8 8=(0, ) satisfying
L X% Lk X
fe(X)-—(e g ( 8 """ g )—-«(9 )PE( 5 ' " o )

where f is some known function which vanishes unless all coordinates are positive, (the X,’s need
not be independent)

It is desired to estimate r(8)=0 under the loss
L(B, d)=L(d/8), de D=(0, o),

We solve this n—dimensinal problem by reducing to the 1-dimensinal problem as follows :

Define Yi=—t, i=1, 2, -, n-1.
Xn

Since Y= ;((i //2 and the distribution of %L and —%‘- does not depend on 0, the joint distribution

of Y=(Y;, Yy, ---, Yn_;) does not depend on 6.

So we may pretend that (Y;, Y, -, Y,_,) are observed first, and then X, is chosen from
the conditional distribution of X, given Y, a distribution with  as a scale parameter. This conditional
problem is intuitively equivalent to the original problem, By 1 ~dimensinal, case, the best {nonrandomized )
invariant estimator of the conditional problem is do(X)=by(Y)X, (in the sence that for each Y
=y, by(y) is the number (provided it exists) for which

E(L(g(Y)Xa | Y=y))=inf E(L(b(Y)X,)| Y=y).

In fact the estimator 6 is best invariant for the original problem. This can be easily shown

as follows :

G={g.: g.(n)=cX for ¢>0} is a group,
— 58 —
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X Xo
g(X)=(cXy, -, an)~(09)““f(“c*é“, -ge")
2.(8)=c® (G has only one orbit in &)
g(d)=cd

Then, the original problem is invariant under G with g  and g,

(G=G=G)
¢ is invariant=3gd(x)=d(gx)
ed(x)=d(cx;, -, Xy) Vx>0, V>0

A sx)=a( XL ... Xaol R
:>xnd’(X)«~d(xn, - L1 (e xn)
::d(xls R Xn):xnd"( X y 0 Zoz. ! 1)

Xn Xn

DXy, 0, Xp)=Xpb(yy, -, Yn-1)

where b(y;, -+, Yn-l)=6("j{'(']", o, sl )
(4]

Every nonrandomized invariant estimator is of the form

(X)=X,b(Y)

R(p, ¢)=EgL(X,b(Y) /0)
=Eg{E[L(X,b(Y) /8] Y]}
=Eo{E;[L(Xab(Y) /6] Y]}
=E{Eg[L(Xb(Y) /8! Y]} (By Fubini Theorem)
=E(L(Xyb(Y)))
=R(l, ¢) Y0€ 8, and Y4

R(g, )=R(1, 8)=E,;L(Xb(Y))
=E{Eg[L(X:b(Y)) | Y]}
=Eo{E;[L(Xb(Y))| Y]} (By Fubini Theorem)
2EG(E [ L(Xaby(Y)) | Y]}
=E{Eg[L(Xnby(Y)) | Y]} (By Fubini Theorem)
=E;L(Xnbo(Y))
=R(1, d,)
=R(6, dy) (provided only that X,;by(Y) is measurable considered as a function
of Y and R(1, d;) <o),
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Hence, ¢%(X)=X,by(Y) is best invariant for the original problem. As a special case, consider
the problem of estimating the scale parameter 6 under the loss L(d/8)={(d/8)—-1}2=(B-d)?/

62 The resulting best invariant estimator is called Pitman’s estimator.

8=1: L(d)=(1-d)? X~f(x;, «+, Xq)
Yl'-'= Xl /ch XlelYn

..............................

Yn"“Xm Xn’zYn
B A
bo(y)=inf E[(1-X:b(y))* Y=y]
- E((X,! Y=y)
E](anl Y=y)

= S(Z)oxﬂg(YL ' Yn-1s x-n)dxn
§ 2 x&(¥1, ) Yo-1,. Xn)dXn

where g(y1, ***, Yo-1 Xa)= f(¥1Xn **, Yo-1Xn, Xn)Xo" ! is the joint desity of (Y, -+, Yq_y,
X,) when 6=1

_ S %af (1%, ) Yoo 1Xn Xn)%" " 'dXe
§ 5 %02 (Y1Xn, *** Yn-1%Xn, Xn)X," " 'dXq
§ S wf(yo, -, Yo, @)@ ldw
Sy, -+, Yo_1@, @)@" dw

(w=x,/8)
IO/ O(x, /6, -, Xa1 /8, %/ 8)(%a /0)" - %, /6 - O
[ (%0 /0)4(x, /8, -, Xa-1/8, X0 /0)(%,/0)"" - %,/ 6 - A6

_ 1§58 (%, /8, -, x,/6)d0
Xo  § 50" FIE(x, /0, -, x,/0)d0

S 00(x)= abo(¥)

_ 20 mHOf(x, /6, -, x,/0)d0
[=0-Ff(x, /6, -, X,/60)d0 "

This is the (generalized) Bayes estimator when the prior is
g(8)=0"3 0>0 under squared error loss L(6, d)=(8—d).
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4. Examples

Example 4.1. X=(X;, -+, X5)
X/’s iid uniform (8, 20), € @=((, o).
To estimate r(8)=0 under the loss

LO, d)=L(§)=(1-F 2= (8-d)%, de (0, ).

fo(xy, -+, xn)r-—@l;- [@<min x= max x520}

f(xy, -, Xp)= when 1Smin x;Smax xS2

1
0 otherwise =

. Xy

—LgX .

SA - (n+2)4g
5 A o~ (n+3)4g
Where A={0¢ @ | 1smin(—’éi )smax(%‘« )S2)
Smin X 9—(n+2) do
S r;mmia . o-(n+3) 4o
n+2 (% max xi)-(n-ﬂ')_([nin Xg)"_("'”)
"+l (% max x)” ™~ (min x) ("%

80(x)=

Remark 4.1. Admissibility of ¢9(X) in estimating 6 was shown in Kim [7] using Karlin’s method.
In fact he showed -that

nt2k {maxX; / (s+1)}~ "+ —minX, / s}~ 0+
n+k *maxX;/ (s+1)}- @) {minX; / s~ (")

a*(X)=

is the (generalized) Bayes estimator of 6 k>0, with respect to the prior g(8)=0-%"1, 6>,
and also is admissible under squared error loss L(8, d)==(0~d)? when X, -, X, are iid as

fo(x)= 1/6, B=x=(s+1)0

0 , otherwise

where s is known positive constant, 60,

Remark 4.2. It should be also remarked that it is not necessarily true that a best invariant estimator
of a scale parameter is admissible, For example, see [1], [2].

— 6] —
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Example 4.2. X=(X;, -, X,)
X’s iid N(0, %) with

L) =g e B ¥
£.( )——_.].'_f (.Z‘,)__l._f(f‘. f(y)= L o-tEw
dW)=—r oy (=21 T), Hy)=—rre™ T

— R IPTR. WY
g=0: fy(x) =1 1( 0 " !
S;ﬁ*d—(nﬁ-z)f(xl/m e, X/ 0)do
§5o-"t9%(x; /0, -+, X3/ a)da
505(02)‘}/2 (n+2)g-1/2 €Xx' gy
- S‘;(az)”l/z (n+3)g~1/2 X s
[ (205D do
f = (2w)¥ "ef* dw
9¥%(n~1) ﬁw%(“”l)e”“"" dw
2% § 5w ne=f do

dﬂ(x)z

(w=1/26% B=3x?)

(Y n+ %)
ﬁ%n+}{

"3 I(% n + 1)
g%n-f—l

(¥ n+ 4¥) -7
"7‘ T(% n + 1) 2, v

Example 4.3. X=(X;, ---, X})), X;’s iid exponential (B8) with

fe(xi)=1 /0 - exp{—x,—/e}, x>0
)= foma (B )= (F), £()=e Y, y>0

S""G (0+2)f(x, /9, -, X,/0)d0
5°°9 43 (x, /8, -+, X,/ 0)dO
Swg (n+2)g-(8") - Txyyg
RS CRER
* @292 . @~ w
‘:(J"":‘e""z“' - 0~ %dw
§ 2 we“Trdw

T [ remtlevTude
rdl) /()™ 1 o
y(n+2) / (Zx)™?  n+l

a(x)=

(w=1/0)

f
{
-
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