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§1. Introduction

In the late 1950's, the emergence of algebraic geometry has contributed to the
development of theories of rings in the study of algebra ([5], [10]). For instance, the
theories of ideal have been studied in terms of algebriac geometry ([4],[87,[117,[12D),
and the projective modules on polynomial rings, too ([91,(141,[16]). The condition
under which a projective module becomes a free module has been obtained with the
help of algebraic geometry, and it was formulated by Quillen and Suslin in 1976 as
follows ([133,[15D).

Theorem 1.]1. (Quillen-Suslin). Let R be a commutative ring with 1. If M is a
finitely generated projective R[ X ]-module, f¢=R[X] a monic polynomial such that M f
is a free R[(X] f-module, then M is a free R[ X -Module.

In section 2, the terms and notations are briefly illustrated, since these will be
used in section 3 and section 4.

And a property of local rings is proved in Theorem 2.8.

In sections 3, a property of the minimal generating system of module is proved in
Theorem 3.7,

In section 4, using Quillen-Suslin's Theorem 1.1, we prove Theorem 4.7, which
states the following:

Let R be a semilocal domain with maximal ideals m;, m, ---,m, such that each local
ring Ry, is a principal ideal domain for 7=1,2,--,¢. Then all finitely generated

projective R[ X, -, X,]-modules are free.
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2 Gyeong-Sig Seo

§2. Preliminaries

In this paper, by a ring we mean a commutative ring with 1. A ring R is called
Noetherian if any ideal of R has a finite system of generators. Every principal ring,
in particular, every field is a Noetherian ring. Moreover, if R is a Noetherian ring,

then the polynomial ring R1X,, X, -+, X.] i8 also Noetherian ([10]).

Lemma 2.1. If R is a principal ideal domain, then every submodule UCRK" is a
free R-module with a finite rank (<n).

Proof. When n=], a submodule UCR is an ideal of R. By our hypothesis, U=uR
(ue=U). We assume that »>1, and that our assertion holds for #—1.

Consider the elements 2= (u,, -+, %, ) EUCR".

(i) If u;=0 for every element ue=U, then UCR""! and thus U is a free R-module
by our induction on hypothesis.

(ii) Let ;0. Let @ be the ideal of R consisting of all elements », which are
the first components of all elemeht in U. By our hypothesis, we have an element
#=R such that t=xR. We put

.0_1: {(ui! 0,0, O)GR"IME{K} .
‘Then it is a submodule of R". It is clear that
U—-WC R

which is a free R-module with a basis {,, -+, #.}. It follows from the above description
that {u,us, +--,u#.} is a basis of U. ///

For a ring R, let S be a multiplicative closed subset of R.

For a R-module M and the cannonical mapping ¢ : M~ Mg,

Ker (¢/)={m&M |there is an s&S such that sm=0}

‘Therefore ¢ is injective if and only if there is no element s in S such that sm=0 for
some m(#0)eM. Accordingly, ¢ :R~—~+RS is injective if any only if S contains no
zero divisor of K.

Proposition 2.2. With the above notations,
i) Mg=1{0} if and only if for any meM, there is an s&8 with sm=0, and RS: {0}
—_ 30 -



On the Minimal Generating Systems of Modules and Projective Modules over Semilocal Domains 3

if only if 0S8,

(ii) For feR, sz{o} if any only f is nilpotent,

(iii) M={0} if and only if My=0 for all maximal ideals m of R.

Proof. (i) Since %’—EMS is zero if there is an element s’&S such that s'm=0,
Mg=1{0} if and only if there is an s&S such that sm=0 for each me=M. Thus Rg=1{0}
if and only if 0&=S because ]&=R.

(ii) Each element of Rf is of the form -—;-,r where r&R. Since —}~=0 if and only
if there exists a positive integer m such that f®=0, f is a nilpotent element.

(iii) Suppose My ={0} for all maximal ideals m of R. Then, by (i), for any
meM Ann(m) (the set of all anihilators in R pf m) is contained in no maxima) ideals
of R. That is, Ann(m) contains a unit of R. Therefore, Ann(m)=Ri1. Hence m=
1em=0. ///

Let S be a multiplicative closed subset of a ring R, and let M be a K-module. It
is clear that a submodule U of M is always contained in the kernel of the composite

mapping
M2 Mg MU
where « and 8 are the cannonical mappings

Proposition 2.3. p : (M/U)g—Mg/Uy defined by

m+U\_m ,
(L) =2 Uy (meM, s=$)

is an isomorphism.
Proof. It is clear that p is surjective. Thus we have to show that Ker po={0}.

Assume that

/() =0 (meat, se5).
Then, by the above definition.J:—'»eUs. This means that there exist #&l" and s'=
such——'ll—»-flfr. In consequence, there exists s"€3S such that s’ (s'm—su)=0.
s s

Hence we have the following :

m+U  s"s'm+U _ S"sus U

s s’ss’ T s§'ss’

=0 in U/

—- 3]
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Lemma 2.4. With the above notations for submodules P and Q of M, P=@Q if and

only if for all maximal ideals m of R Py=@y.

Proof. By Proposition 2.3, for each maximal ideal m of R, we have the following:

(259, -22.0na (£59), £

If Py =@ for all maximal ideals m of R, then by (iii) of Proposition 2.2,

That is, Q=P+Q=P,
It is obvious that P=Q implies Py, =@y, for all maximal ideals m of R. ///

Lemma 2.5 (Nakayama’s Lemma). Let an ideal ot of R be contained in
K For a R-module M and a submodule N of M such that M/N is finitely

m.o
womaximal in

generated, if M=N+@M, then M=N. ///

Definition 2.6. For a ring R and a R-module M, we define the following :

(i) Spec (R)={pS-R|p is a prime ideal of R} with the Zariski topology (or the
Spectrum topelogy).

(ii) J(R)={p=Spec (R)|p can be written as the intersection of maximal ideals}
with the relative topology, which is called the J-spectrum of R.

(iii) Max(R)={meSpec (R)|m is a maximal ideal} with the relative topology,
which is called the maximal spectrum of R.

(iv) Supp(M)={pe=Spec (R)|My={0}}.

Obviously, Max (R)CJ(R)CSpec (R). If X is one of these space and Ol is an
ideal of R.

B(o) = {pEX | pD0}
is called the zero set of oL in X.
Proppsitionz. 7. If M is finitely generated, then
Supp (M)=8B(Ann M)).

In particular, Supp (M) is a closed subset of Spec (R).
) .
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Proof. Let {my;,:-,m} M be a set of generators, Then p&Supp (M) implies
My={0}. By (i) of Proposition 2.2, there exist elements 5,&&R~—p such that

s,m.-'—=0 (f::l, 21 "ty t)-

We put s=s;5;---s,, Then s=Ann (M) and s&p.
Thus p&B (Ann (M)) by our definition above.

Conversely, we suppose that p&B(Ann (M)). This means that there exists an
element s Ann (M) with s&p. By (i) of Proposition 2.2, My={0}. That is,
»&Supp (M). ///

Let X be a topological space. X is said to be irreducible if for any decomposition
X=A;JA; with closéd subsets 4;CCX (i=1,2) we have X=A4, or X=4, X is said
to be Noetherian if every descending chain A;DA; - of closed subsets A; of X is
stationary. An frreducible component of X is a maximal irreducible subset of X. It is
well-known that every Noetherian topological space has only finitely many irreducible
components,

The Krull dimensiom dim R of a ring R is the dimension of Spec (R) i.e., the

supremum of the lengths # of all chains

X=X Xy (M)

of nonempty closed irreducible subsets X, of X if we put X =8pec (R). This is just

the supremum of the lengths z of all prime ideal chains
P Pa (**

in Spec (R). The height ht (p) of pe=Spec (R) is the supremum of the lengths of all
chains (**) with p=p,.

For an arbitrary ideal 0l#R, the dimension of @, written dim m, is just
dim(R/m)=dim (Spec (R/0)). Moreover, for each pc=Spec (R), we can prove that

dim (p)=dim (B(p))

(C10D.

For a ring homomorphism a : R—S, it is well-hnown that the mapping

Spec (a)=¢ : Spec (lﬁ)a«-»Spec (R)
g r— a '(q),

— 33—
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is continuous. We put

Sy=the ring of fractions of S with denominator set a(R\p)
where pe=Spec (R).

Theorem 2.8. Under the above situation, for each p=Spec (R) we have the
followings.

(i) The elements of ¢~'(p) correspond bijectively with the elements of the fibre
Spec (Sp/pS,,) of ¢ over p.

(ii) If S is a finitely generated R-module, then the number of elements of ¢~!(p)
is at most as large as the deimension of Sy/pS), as a vector space Rp/pRp (a field).

Proof. (i) We have to note that

¢~} (p) ={ge=Spec (S))gq[la(R)=a(p)}

and Spec (Sp/ps,,)z{qplqew“(p)} where g, is the ideal of fractions of g&¢~1(p) with
denominator set a(R\p). Therefore we have an one-to-one and onto correspondence
between ¢~*(p) and Spec (S;/pSy).

(ii) Since S is finitely generated as K-module, S is integral over K. For any two
different elements ¢; and g, in ¢7*(v), @1[1ga=a(p) ([3],051,[10D).

Moreover, Sy is also finitely generated as a R,-module.

We assum that
szRpsl-i-----}-Rps, (S,-ES» for i=1,2,", t)’
and that

s;EpSy for i=1,2,,r
s,EpSp for j=r+1, L

Then the dimension of S,/pS, over the field Ry/pRy is just . Moreover, for the
cannonical map ¢ : S——S,/pS, as in the diagram

O —— Sp
N ® /
¢\ e
Sp/pSp
Spec (¢) is one-to-one and into. Since Rp/pRp is a field. every ideal of .S,,/;JSp is
— 34 .
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generated by a subset of {s,,---,s,}. Therefore, the number of ideals such that any
two ideals meet only on {0} is » or less than », Thereeore, the number of prime ideals
ino-l(p<r. ///

§3. Minimal Generating Systems

Let R(+0) be a ring and let M be a finitely generated R-module. We put

#{M)=the number of elements in a shortest system of generators
of M, which is called a minimal generating system of M
over K.

It is clear that (M) is a fixed number for M, and also that if M is a finitely
generated free R-module, then the minimal generating systems are just the bases of
M ([10D).

Lemma 3.1. For a local ring (R, m), let M be a finitely generated R-module.

(i) p(M)=dimg(M/mM) where K=R/m is a field.

(it) If {my,++,m,) is a minimal generating system of Af and if there exist r;,--,7,
&R such that

]
Lm0

then »,&m for i=1,2, -, ¢.
(iii) Any generating system of )/ contains a minimal generating system.

Proof. (i) For {my, -, m A, we assume that
M>DRmy+ Rmy+ -+ Rm,.

Suppose the cannonical mapping
M——M/mA (m~—iit, ¥i=1,2, 1),

and M/mM =K+ + R,
Then, it follows that A/ =Rny-+-- = Rm,-~ml.
By Lemma 2.5 (Nakayama’s Lemma), m)/={0}. Therefore, {wmy,--,m} is a

minimal generating system of 1/ if and onlyv if " {5y, --+,%,} is a basis of M, 'ml/ over

—— 35 —
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the field K, and thus p(M)=dim(M/mM).
(ii) Let {my, ---,m,) be a minimal generating system of M. Then, as in the proof
of (i), {my,--,7,.} is a basis of M/mM over K.

£ ¢
If X3 rom=0, then 32 Fm,=0.
i L

‘This implies 7;=0 in K for i=1,2,-,¢,
Since K=R/m, 7,=0 implies that r,&m for all i=1,2, -, .

(iii) We assume that
M=Rm+--+Rm, (me&=M for i=1,2,,1).

Then, as before, {m;, -, #.} is a generating system of M/mM.

Thus we have a basis {#;,, -+, %5, } {1, =+, .} of M/mM over K. Then {myy<orym; }
is a minimal generating ststem of M. ///

For a finitely generated R-module M, we put

#y (M) =the number of elements in a shortest generating system
of the Ry,~module M b

for each pe=Spec (R). Further, for r&N(=1{0,1,2,3,4,}), we define an ideal

I(Mt"):( 2. 'AM(M/<mb"'imr>)o

LS ERTRT R0 I

where the sum is taken over all subsets of M, consisting of r elements. It is clear
that (a) I(M,0)=Ann (M), (b) I(M,r)ZI(M,r+1) for all r&N, (c) I(M,r)=R
if »>p(M) and (d) 7 Mgy r)=1(M, ’)S for any multiplicative closed set SCR.

Proposition 3.2. For pe=Spec (R),
tp(M)>r+1 if and only if pCI(M, 7).

Proof. Suppose sp(M)2r+1. If I(M,r)Y&p, then I(M, r)y=Ry and thus I(My,7r)
=Ry. Then, by (c), #(My)<r. This contradicts to our asumption sy(M)=p(My) >
r+1.

Therefore I(M,r)Cp.

Conversely, suppose DI (M,r). If tp(M)<r, then I(Mp. r) =Ryp. Hence I(M, )y

36—
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=Ry, and I(M,r)&p. This is a contradiction. ///

Definition 3.3. (i) Let M be a finitely generated R-module. An element meM is
said to be basic at pe=Spec (R) if mécpMy, where M——> My(m——-im).

(ii) A submodule UCM is called k-times basic for some k&N at pe=Spec (R) if
(M) —upy(M/U) 2 k.

Let X be the J-spectrum of R and let M be a finitely generated R-module. For
each m&M, we define that

X(m)={pe=X|m is basic at p}

By Lemma 3.1, m(eM) is basic at p=B(a) if and only if the image % of m in the
R-module M/0LM is basic at p, where @ is an ideal of R.
By the above definitions, we have the following properties ([10]).

Property 3.4. With the above notations, the followings hold.
(i) If X is Noetherian and d=dim X <co, then X(m)[]B(0t) has only finitely many
minimal elements.

(ii) Under the hypothesis of (i), we put
u.=Max {y(M)+dim B(p) |pEX(m)}.
Then there are only finitely many p=X(m) with
ty(M) +dim B(p) =u..

(iii) Under the hypothesis of (i), let M =Rm+Rmy+t -+ Rm,= <miy, mg, +++, m,>
(m,EM for i’=1, 29 "’!t) and

,u;,(M)erim Bp) <t for all pe=X(m,).
Then there exist elements a;, @z, *-+, @,.,€=R such that
M= <my+taym, Myt Gy, oy My i+ Qo>

Proposition 3.5. Let X=J(R) be Noetherian of finite Krull dimension. Then, for
a finitely generated R-module M,

p(M)<u=max {u,(M)+dim B(p) |pEX 1 Supp (M)}.
— 37 —
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Proof. Let u(M)=t and M= <my, ma, -+, m,>.
We put

u=Max {u,(M)+dim B(p)|peX N Supp (M)}
(=Max {g,(M)+dim B(p)|p=X(m,)}).

If #>t, then we have nothing to prove.
Assume that »<{¢. Then

tp(M)+dim B(p)<t for all p=X(m,).
By (iii) of property 3.4, there are a;,---,a,.,&R such that
M=<m;+am,, mo+amm, <, m,_1+a,.m>.
Hence u(M)<¢-—1. This is a contradiction. ///
Corollary 3.8. (i) Let &L be an ideal of R and
u=Max {p,(0)+dim B(p)|p=B(W)).

Then u(R)<Max {», d+1}, where dim J(R)=d.

(ii) Let R be a semilocal ring with maximal ideals nty, Mg, +--,m, and let M be a
finitely generated R-module, #=Max {gy, (M)|i=1,2,+,¢}. Then u(M)<u.

Proof. (i) For each peSpec (R) such that @& p, we have My=~Ry Thus, in this
case u,(01)=1. Moreover, dim B(p)<dim J(R). Therefore, we have

Max {gy(0) +dim B(p) |R&pEJ(R)}<d+1
‘Therefore,
Max {z,(0)+dim 8(p) |peX Supp (®)} <Max {u,d+1}.

By proposition 3.5, #(M)<Max {«, d+1}.
(ii) Since R is a semilocal ring, X =J(R)=Max (R)and dim J(R)=dim Max (R)
=0 ({6],[10]). Thus, in the formula

u=Max {uy(M)+dim B(p)|p&X () Supp (M)}

— 38 —
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in Proposition 3.5, we have dim B(p)=0 for all pe=X[) Supp(M). Moreover, since
peEX () Supp (M) implies that p is maximal ideal, ;J(M)ggs;flaitm ,{‘u’"‘ . ///

Theorem 3.7. Ket (R, m) be a Noetherian local ring and let ®Cm be an ideal of
R with é&m/m which is not a zero divisor in R/a. We put {=2+0 and R=R/(x)
and consider the cannonical mapping

7 : R—R/(x) (a~—a).

Then, (i) ®=<ay,ay -, a> if and only if =<7, a,, -, a,>.

(ii) (o) =p(@) where n(a)=0q.

Proof. Since é&m/m and £=x+@, x&m. By our bypothesis, there is not any
element y in R\ @ such that yxe=®. Since (x)m, R is a local ring with it maximal

jdeal m/(x)=m.
1t follows that i m.

Since R is a Noetherian local ring, so is K. Hence oL and 0L are finitely generated
ideals. We assume ®=<my, mq, -, m,>, where {m;,-,m,} i8 a minimal generating
system pf 0L Then m,&(x) for i=1,2,--,r, because that if so, then there exists an
element y&R such that egm;=yx and thus ¢ is a zero divisor in m/oL,

Therefore, we have 7(m,)=m;#0 for i=]1,2,,r.

It is clear that 0= <y, g, +-, i, >. Thus, it remains to prove that {#i, s, --,,}
is a minimal generating system of oL

We suppose that there are elements a,, a,, @1, @iy, oy @, in R such that
Wi =@ it oot 8 gt B iy PRy b oo 3 .
‘This means that
mi+ (x) =amy+ -+ a; iy Gipme+ o+ aom, + (%),
and thus there exists an element ae=R satisfying
m=a,m;+ o+ Qa8 gum, - ax,
Since

my—(@im;+ - T aiomioytaiamgg oot a,m, )ES,
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we have a==0t. Therefore, there exist elements &1y, €, in R such that
a=4my-t-+limi+ o+ Lm,.

In consequence, we have
m;— (a,mri- oo +a,-‘;m,-_1+a.-+1mm e +a,m,.) :3,m1x+ e +£’,m,x

and thus m;(1—4;x) =33 (art+€,x)my.
k=)
k# i

Since 1—~¢x is a unit in R, m‘:ﬁ"(j"’”lf;j (ay+4sx)m;,. We have a contradition.
k=1 i

k¥

Therefore, {#,,-,%,} isa minimal generating system of 0l. That is, 2(0) =u(®). ///

§4. Projective Modules

A R-module M is called a projective R-module if there is-a R-module M’ such
that MMM’ is a free R-module (R is a ring). Sometimes, M is called locall y free
if My, is afree R,,-module for every maximal ideal m of R. From the above definit-
ions about projective modules, We eagily see the following facts ({21,[71,010D).

Property 4.1. (i) For any multiplicative closed subsets S of R, if M is a projective
R-module, then MS is a projective Rs—module.

(ii) If M is a projective R-module and PCR is a subring such that R is a free
P-module, then M is also a projective P-module.

(iii) If M is a locally free R-module, then M, is a free Ry-module for all pe=
Spce (R).

Let S be a multiplicative closed subset of R and let M be a R-module.
Definition 4.2. If UCM is a submodule of M, then we define such that
S(U) = {meM |there is an seS with smel}
which is called the S-component of U. We also define such that

%(Mg) =the set of all submodules of the RS—module Mg
— 40 —
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and

Ug(M)={UCM (submodule)|S(U)=U}.
1t is obvious that
®© UCSW), @ S(SU))=SWU), and

® S(\U)=(1SW.) where Ui(i=1,2,,%) is a submodule of M.

Proposition 4,3. We have the inclusionwpreserving bijective mapping
a: ‘E’S(M)———v@‘(MS) (U———-»US).
‘The inverse mapping asigns to each U'EE%(MS) the submodule i-*(U’), where
i M “‘”"MS is the cannonical mapping.

Proof. For each U’EQ(MS) (i.e., U’ is a submodule of MS), let U=/YU’). If
me&S(U) (i.e., there is an s&S with smezl/), then i(sm)z—i—-i(m)EU', Thus

1 § . . ,
el —l-t(m)—z(m)EU

because ~--Rg. This means that meU. It follows that U=S(U) and Us2g(M).
Therefore a™*(U’)=¢"Y(U")=U is well-defined,

Moreover, it clear that UgCU’ because that for each w?—(mEU ,SEES)EUS —§~i (m)

= —’;ieU’. For each element -";—-EU’, l’l’—EU’, and so that me&U, Hence, —T—EUS
1t follows that U’=US. ///

With the above notations, we can easily prove the followings,
(a) For pe=Spec (R),

S(p)={r<R|there is an s&S with srcSp}=p if p)S=4¢,
R if p\S+o.

(b) For an ideal 0t of R such that m=f]l p; with p,e=Spec (R), we have

S = {]p:
Pins=4¢

because that

— 4] —
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S@=ASw)=N_ Sk)=  ps
= pins=¢ pins=4¢

by (a).

Lemma 4.4. Let i : R—Rg be the cannonical mapping and 2T ={p&Spec (R)}
p(1S=8}, where S is a multiplicative closed subset of R.

(i) Every pcSpec (RS) is of the form ﬂrzps with a uniquely determined p.

(ii) If R is a unique factorization domain (a factorial ring) and 04:S, then RS is
also a unique factorization domain, ‘

Proof. (i) By Proposition 4.3,

is a bijective mapping. By (a) above, if p{1S=8, then pe‘-s%'s(le). Therefore, it follow
that Z'JC:@!S(R),

In particular, in the cannonical maj)ping
i : R_—"RSI

i'(B)=p is a pime ideal of B and vszﬂ. In this case, pe=3_ and by the bijectivity
of a such a prime ideal p&=3_ is determined uniquely.

(ii) By our assumption, R is an integral domain. Hence 7 : R———«»RS is a monomo-
£
1
element of RS' If (7)(1S+0, then there is an element =R such tha ere=S. Thus

rphism. Since 0&S, if z is a prime element of R and (z)[1S=¢, then is a prime

and hence % is a unit in RS. It follows that every element =0 in RS is either a unit
or a product of prime elements,

That is, RS is a unique factorization domain. ///

Definition 4.5. For a finitely generated projective K-module P and p&Spec (R),
up(P) is called the ramk of P at p. P is called of rank 7 if py(P)=r for all pe=
Spec (R).

Lemma 4.6. For a finitely generated projective R-module P with rank » at p=

— 42 —
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Spec (R), there exists an element f& R p such that P £ is a free R f-module with rank 7,

Proof. Let {w;,-,®,} be a minimal generating system of the R,-module P,. We
can choose the w; as images of elements w! of P, for if we multiply the w; by a
common denominator, we again get a minimal generating system of P,

Consider the exact sequence
0——K—R"_ %, P—sC—,

where a(e;) =w* (¢:=(0,0,*+,1,0,,00=KR"), Ker a=K and C=coker a. By our
hypothesis, Py=(Rp)" and K,=0=C,, By (i) of Proposition 2.2, we have an element
JER\p such that Cf:IO}. By (i) of Property 4.1, Pf is a projective Rf~module,
and thus

is a split squence. That is, R f'aK f@P f and thus X 5 is a finitely generated R f«module.
As K= {0}, by (1) of Proposition 2.2, there exists an geER\p such that Kg={0}. Thu
s(K )g=(Kg) =K sg=10}. Therefore, we have

(Reg) =Psg. ///

Theorem 4,7. Let R be a semi-local domain with maximal ideals m,, mg, -, m,
such that each local ring Ry, is a principal ideal domain for 7=1,2,-,¢. Then all
finitely generated projective R[ X}, ---, X,.]-modules are free.

Proof. Our proof is divided into three steps.
(1) We claim that R is a principal ideal domain, Since R is a semi-local ring, we
have J(R)=Max (R) and

dim J(R)=dim Max (R)=0.
By Corollary 3.6, for
u=Max {py(®)+dim B(p)|p=B(0V)},

u()<Max {»,d+1}, where 0. is an ideal of R,peJ(R) and dim J(R)=d. Thus
s{o)=Max {»,1}.
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On the other hand peJ(R) implies that p is a maximal ideal of R because J(R)=
Max (R). By our hypothesis, if or is a nonzero ideal, then )u”(ﬂl)zl.

Therefore x(0t)=1 and R is a principal ideal domain.

(2) »=0. Then, by (1), R is a principal ideal domain, and since every finitely
generated projective module over a principal ideal domain is a free module by Lemma
2.1, our assertion is correct.

(3) »>0. We suppose that our theorem was proved for all positive integers <m—1.
We stall put such that

S=the multiplicative closed set of all monic polynomials in R[X,].

We assume that M is a finitely generated projective R[ X, -, X,]-module. Then Mg
is also a finitely generated projective R[ X, X4, -+, X ,.]Swmodule. Note that R[ X, X,,
---,X,,]S::R[XJS [Xa ¢y X,]. Hence, if we can prove that R[XJS is a principal ideal
domain, then by our inductive hypothesis MS is a free R[X 1,-~,X,.]S~module with
finite rank. By Lemma 4.6, there is an element f&S such that M ¢ is a free R[X,,
X,,-u-,X,.]f—module. By Theorem 1.1 (Quillen~Suslin), M is a free R[X;, -, X.]-
module.

Therefore we have to prove that R[X ‘]S is a principal ideal domain. Since R[X,]
is a factorial ring (Note that every principal ideal domain is a factorial ring), by
(ii) of Lemma 4.4 R[(X ‘:'S is also a factorial ring, We put K=R[X ‘]S'

For peSpec (K) with p(1R={0}, K|, is a ring consisting of fractions in Q(R) [X,]
where Q(R) is the quotient field of R. Thus the height of p is zero or one, and
hence p is a principal ideal.

Next, we assume that p{|1R+{0}. Since R is a principal ideal domain (and thus R
is a factorial ring), there exists a prime element pe=R such that p(\R==(p). Then
K/pK=R/(pXX,) is a field, hence pK is a maximal ideal of K. In particular, pK=p,
and thus p is a principal ideal of K. In consequence, any p+(0) is therefore generated
by a prime element = of X.

From this, we can prove that KX=R[X,]g is a principal ideal domain as follows.

For ay,a,&=K\\ {0}, we assume that ¢ is the greatest common divisor of @, and a,.
For p=(r)eSpec (K), we auuume that #*!|q; and n"1)a,. Then, for v=Min {v,,v;},
z°{c. Hence, it follows that (a,as) Kyp=(c)K,, for all p&Spec (K). Thus, for every

maximal ideal m of K,

L
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(a1,82) Kyy=()Kpm, 1.6, (@ a)m=(m.

By Lemma 2.4, we have (a,2;)=(c). ///
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