On the Minimal Generating Systems of Modules and Projective Modules over Semilocal Domains

Gyeong-Sig Seo

Dept. of Mathematics, Chonbuk National University Chonju, 560-756, Korea.

§ 1. Introduction

In the late 1950's, the emergence of algebraic geometry has contributed to the development of theories of rings in the study of algebra ([5], [10]). For instance, the theories of ideal have been studied in terms of algebraic geometry ([4], [8], [11], [12]), and the projective modules on polynomial rings, too ([9], [14], [16]). The condition under which a projective module becomes a free module has been obtained with the help of algebraic geometry, and it was formulated by Quillen and Suslin in 1976 as follows ([13], [15]).

Theorem 1.1. (Quillen-Suslin). Let R be a commutative ring with 1. If M is a finitely generated projective R[X]-module, $f \in R[X]$ a monic polynomial such that M_f is a free $R[X]_f$ -module, then M is a free R[X]-Module.

In section 2, the terms and notations are briefly illustrated, since these will be used in section 3 and section 4.

And a property of local rings is proved in Theorem 2.8.

In sections 3, a property of the minimal generating system of module is proved in Theorem 3.7.

In section 4, using Quillen-Suslin's Theorem 1.1, we prove Theorem 4.7, which states the following:

Let R be a semilocal domain with maximal ideals m_1, m_2, \cdots, m_n such that each local ring R_{m_i} is a principal ideal domain for $i=1,2,\cdots,t$. Then all finitely generated projective $R[X_1,\cdots,X_n]$ -modules are free.

§ 2. Preliminaries

In this paper, by a ring we mean a commutative ring with 1. A ring R is called Noetherian if any ideal of R has a finite system of generators. Every principal ring, in particular, every field is a Noetherian ring. Moreover, if R is a Noetherian ring, then the polynomial ring $R] X_1, X_2, \dots, X_n]$ is also Noetherian ([10]).

Lemma 2.1. If R is a principal ideal domain, then every submodule $U \subset R^n$ is a free R-module with a finite rank $(\leq n)$.

Proof. When n=1, a submodule $U \subseteq R$ is an ideal of R. By our hypothesis, U=uR ($u \in U$). We assume that n>1, and that our assertion holds for n-1.

Consider the elements $u=(u_1, \dots, u_n) \in U \subset \mathbb{R}^n$.

- (i) If $u_1=0$ for every element $u \in U$, then $U \subset R^{n-1}$ and thus U is a free R-module by our induction on hypothesis.
- (ii) Let $u_1 \neq 0$. Let \mathfrak{A} be the ideal of R consisting of all elements u_1 which are the first components of all element in U. By our hypothesis, we have an element $u \in R$ such that $\mathfrak{A} = uR$. We put

$$\overline{\mathfrak{A}} = \{(u_1, 0, 0, \dots, 0) \in \mathbb{R}^n | u_1 \in \mathfrak{A}\}.$$

Then it is a submodule of R". It is clear that

$$U-\overline{\mathfrak{a}}\subset R^{n-1}$$

which is a free R-module with a basis $\{u_2, \dots, u_n\}$. It follows from the above description that $\{u, u_2, \dots, u_n\}$ is a basis of U. ///

For a ring R, let S be a multiplicative closed subset of R.

For a R-module M and the cannonical mapping $i: M \longrightarrow M_S$,

Ker
$$(i) = \{m \in M \mid \text{there is an } s \in S \text{ such that } sm = 0\}$$

Therefore i is injective if and only if there is no element s in S such that sm=0 for some $m(\neq 0) \subseteq M$. Accordingly, $i: R \longrightarrow R_S$ is injective if any only if S contains no zero divisor of R.

Proposition 2.2. With the above notations,

(i) $M_S = \{0\}$ if and only if for any $m \in M$, there is an $s \in S$ with sm = 0, and $R_S = \{0\}$

On the Minimal Generating Systems of Modules and Projective Modules over Semilocal Domains 3 if only if 0€S.

- (ii) For $f \in \mathbb{R}$, $R_f = \{0\}$ if any only f is nilpotent,
- (iii) $M = \{0\}$ if and only if $M_m = 0$ for all maximal ideals m of R.

Proof. (i) Since $\frac{m}{s} \in M_S$ is zero if there is an element $s' \in S$ such that s'm=0, $M_S=\{0\}$ if and only if there is an $s\in S$ such that sm=0 for each $m\in M$. Thus $R_S=\{0\}$ if and only if $0\in S$ because $1\in R$.

- (ii) Each element of R_f is of the form $\frac{r}{f^n}$ where $r \in \mathbb{R}$. Since $\frac{1}{f} = 0$ if and only if there exists a positive integer m such that $f^m = 0$, f is a nilpotent element.
- (iii) Suppose $M_m = \{0\}$ for all maximal ideals m of R. Then, by (i), for any $m \in M$ Ann(m) (the set of all anihilators in R pf m) is contained in no maximal ideals of R. That is, Ann(m) contains a unit of R. Therefore, Ann $(m) = R \Rightarrow 1$. Hence $m = 1 \cdot m = 0$. ///

Let S be a multiplicative closed subset of a ring R, and let M be a R-module. It is clear that a submodule U of M is always contained in the kernel of the composite mapping

$$M \xrightarrow{\alpha} M_S \xrightarrow{\beta} M_S/U_S$$

where α and β are the cannonical mappings

Proposition 2.3. $\rho: (M/U)_S \longrightarrow M_S/U_S$ defined by

$$\rho\left(\frac{m+U}{s}\right) = \frac{m}{s} + U_S \ (m \in M, \ s \in S)$$

is an isomorphism.

Proof. It is clear that ρ is surjective. Thus we have to show that Ker $\rho = \{0\}$. Assume that

$$\rho\left(\frac{m+U}{s}\right)=0 \ (m\in M, \ s\in S).$$

Then, by the above definition, $\frac{m}{s} \in U_S$. This means that there exist $n \in U$ and $s' \in S$ such $\frac{m}{s} = \frac{u}{s'}$. In consequence, there exists $s' \in S$ such that s''(s'm - su) = 0.

Hence we have the following:

$$\frac{m+U}{s} = \frac{s''s'm+U}{s''ss'} = \frac{s''su+U}{s''ss'} = 0$$
 in $(M/U)_S$.

Lemma 2.4. With the above notations for submodules P and Q of M, P=Q if and only if for all maximal ideals m of R $P_m=Q_m$.

Proof. By Proposition 2.3, for each maximal ideal m of R, we have the following:

$$\left(\frac{P+Q}{Q}\right)_{\mathrm{m}} = \frac{P_{\mathrm{m}} + Q_{\mathrm{m}}}{Q_{\mathrm{m}}} \text{ and } \left(\frac{P+Q}{P}\right)_{\mathrm{m}} = \frac{P_{\mathrm{m}} + Q_{\mathrm{m}}}{P_{\mathrm{m}}}.$$

If $P_{\rm m} = Q_{\rm m}$ for all maximal ideals m of R, then by (iii) of Proposition 2.2.

$$\frac{P+Q}{Q} = \frac{P+Q}{P} = \{0\}.$$

That is, Q=P+Q=P.

It is obvious that P=Q implies $P_m=Q_m$ for all maximal ideals m of R. ///

Lemma 2.5. (Nakayama's Lemma). Let an ideal \mathfrak{A} of R be contained in $\bigcap_{m:\max i m \in \mathbb{N}} m$. For a R-module M and a submodule N of M such that M/N is finitely generated, if $M = N + \mathfrak{A}M$, then M = N. ///

Definition 2.6. For a ring R and a R-module M, we define the following:

- (i) Spec $(R) = \{ \mathfrak{p} \subseteq R | \mathfrak{p} \text{ is a prime ideal of } R \}$ with the Zariski topology (or the Spectrum topology).
- (ii) $J(R) = \{p \in \text{Spec } (R) | p \text{ can be written as the intersection of maximal ideals} \}$ with the relative topology, which is called the *J-spectrum* of *R*.
- (iii) $Max(R) = \{m \in Spec(R) \mid m \text{ is a maximal ideal}\}\$ with the relative topology, which is called the *maximal spectrum* of R.
 - (iv) Supp $(M) = \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid M_{\mathfrak{p}} \neq \{0\} \}.$

Obviously, Max $(R) \subset J(R) \subset \operatorname{Spec}(R)$. If X is one of these space and $\mathfrak A$ is an ideal of R.

$$\mathfrak{B}(\mathfrak{A}) = \{\mathfrak{p} \in X \mid \mathfrak{p} \supset \mathfrak{A}\}$$

is called the zero set of on in X.

Proposition2.7. If M is finitely generated, then

Supp
$$(M) = \mathfrak{B}(Ann M)$$
.

In particular, Supp (M) is a closed subset of Spec (R).

On the Minimal Generating Systems of Modules and Projective Modules over Semilocal Domains 5

Proof. Let $\{m_1, \dots, m_t\} \subset M$ be a set of generators. Then $\mathfrak{p} \notin \operatorname{Supp} (M)$ implies $M_{\mathfrak{p}} = \{0\}$. By (i) of Proposition 2.2, there exist elements $s_i \in R - \mathfrak{p}$ such that

$$s_i m_i = 0 \ (i = 1, 2, \dots, t).$$

We put $s = s_1 s_2 \cdots s_t$. Then $s \in Ann(M)$ and $s \in \mathfrak{p}$.

Thus $p \in \mathfrak{B}(Ann (M))$ by our definition above.

Conversely, we suppose that $\mathfrak{p} \in \mathfrak{B}(\mathrm{Ann}\ (M))$. This means that there exists an element $s \notin \mathrm{Ann}\ (M)$ with $s \in \mathfrak{p}$. By (i) of Proposition 2.2, $M_{\mathfrak{p}} = \{0\}$. That is, $\mathfrak{p} \in \mathrm{Supp}\ (M)$. ///

Let X be a topological space. X is said to be *irreducible* if for any decomposition $X=A_1\cup A_2$ with closed subsets $A_i\subset X$ (i=1,2) we have $X=A_1$ or $X=A_2$. X is said to be Noetherian if every descending chain $A_1\supset A_2\supset \cdots$ of closed subsets A_i of X is stationary. An *irreducible component* of X is a maximal irreducible subset of X. It is well-known that every Noetherian topological space has only finitely many irreducible components.

The Krull dimension $\dim R$ of a ring R is the dimension of Spec (R) i.e., the supremum of the lengths n of all chains

$$X_0 \subseteq X_1 \subseteq \cdots \subseteq X_n$$
 (*)

of nonempty closed irreducible subsets X_i of X if we put X = Spec (R). This is just the supremum of the lengths n of all prime ideal chains

$$\mathfrak{p}_0 \subseteq \mathfrak{p}_1 \subseteq \cdots \subseteq \mathfrak{p}_n$$
 (**)

in Spec (R). The height ht (p) of p Spec (R) is the supremum of the lengths of all chains (**) with $p = p_n$.

For an arbitrary ideal $\alpha \neq R$, the dimension of α , written dim α , is just $\dim(R/\alpha) = \dim (\operatorname{Spec} (R/\alpha))$. Moreover, for each $p \in \operatorname{Spec} (R)$, we can prove that

$$\dim (\mathfrak{p}) = \dim (\mathfrak{B}(\mathfrak{p}))$$

([10]).

For a ring homomorphism $\alpha: R \longrightarrow S$, it is well-hnown that the mapping

is continuous. We put

 $S_{\mathfrak{p}}$ = the ring of fractions of S with denominator set $\alpha(R \setminus \mathfrak{p})$

where $p \in Spec(R)$.

Theorem 2.8. Under the above situation, for each $p \in Spec(R)$ we have the followings.

- (i) The elements of $\varphi^{-1}(\mathfrak{p})$ correspond bijectively with the elements of the fibre Spec $(S_{\mathfrak{p}}/\mathfrak{p}S_{\mathfrak{p}})$ of φ over \mathfrak{p} .
- (ii) If S is a finitely generated R-module, then the number of elements of $\varphi^{-1}(\mathfrak{p})$ is at most as large as the deimension of $S_{\mathfrak{p}}/\mathfrak{p}S_{\mathfrak{p}}$ as a vector space $R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}$ (a field).

Proof. (i) We have to note that

$$\varphi^{-1}(\mathfrak{p}) = \{q \in \operatorname{Spec}(S)\} q \cap \alpha(R) = \alpha(\mathfrak{p})\}$$

and Spec $(S_{\mathfrak{p}}/\mathfrak{p}S_{\mathfrak{p}}) = \{q_{\mathfrak{p}} | q \in \varphi^{-1}(\mathfrak{p})\}$ where $q_{\mathfrak{p}}$ is the ideal of fractions of $q \in \varphi^{-1}(\mathfrak{p})$ with denominator set $\alpha(R \setminus \mathfrak{p})$. Therefore we have an one-to-one and onto correspondence between $\varphi^{-1}(\mathfrak{p})$ and Spec $(S_{\mathfrak{p}}/\mathfrak{p}S_{\mathfrak{p}})$.

(ii) Since S is finitely generated as R-module, S is integral over R. For any two different elements q_1 and q_2 in $\varphi^{-1}(\mathfrak{p})$, $q_1 \cap q_2 = \alpha(\mathfrak{p})$ ([3], [5], [10]).

Moreover, $S_{\mathfrak{p}}$ is also finitely generated as a $R_{\mathfrak{p}}$ -module.

We assum that

$$S_{p} = R_{p}s_{1} + \cdots + R_{p}s_{i}$$
 ($s_{i} \in S_{p}$ for $i = 1, 2, \dots, t$),

and that

$$s_i \notin \mathfrak{p}S_{\mathfrak{p}}$$
 for $i=1,2,\cdots,r$
 $s_i \in \mathfrak{p}S_{\mathfrak{p}}$ for $j=r+1,\cdots,t$.

Then the dimension of $S_{\mathfrak{p}}/\mathfrak{p}S_{\mathfrak{p}}$ over the field $R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}$ is just r. Moreover, for the cannonical map $\psi: S \longrightarrow S_{\mathfrak{p}}/\mathfrak{p}S_{\mathfrak{p}}$ as in the diagram

$$S \xrightarrow{\psi} S_{\mathfrak{p}}$$

$$S_{\mathfrak{p}}/\mathfrak{p}S_{\mathfrak{p}}$$

Spec (ϕ) is one-to-one and into. Since $R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}$ is a field. every ideal of $S_{\mathfrak{p}}/\mathfrak{p}S_{\mathfrak{p}}$ is

On the Minimal Generating Systems of Modules and Projective Modules over Semilocal Domains 7 generated by a subset of $\{s_1, \dots, s_r\}$. Therefore, the number of ideals such that any two ideals meet only on $\{0\}$ is r or less than r. Therefore, the number of prime ideals in $\varphi^{-1}(\mathfrak{p}) \leq r$. ///

§3. Minimal Generating Systems

Let $R(\neq 0)$ be a ring and let M be a finitely generated R-module. We put

 $\mu(M)$ = the number of elements in a shortest system of generators of M, which is called a *minimal generating system* of M over R.

It is clear that $\mu(M)$ is a fixed number for M, and also that if M is a finitely generated free R-module, then the minimal generating systems are just the bases of M ([10]).

Lemma 3.1. For a local ring (R, m), let M be a finitely generated R-module.

- (i) $\mu(M) = \dim_{\mathbf{Z}}(M/mM)$ where K = R/m is a field.
- (ii) If $\{m_1, \dots, m_r\}$ is a minimal generating system of M and if there exist r_1, \dots, r_r $\in \mathbb{R}$ such that

$$\sum_{i=1}^{s} r_i m_i = 0.$$

then $r_i \in m$ for $i=1,2,\dots,t$.

(iii) Any generating system of M contains a minimal generating system.

Proof. (i) For $\{m_1, \dots, m_t\} \subset M$, we assume that

$$M \supset Rm_1 + Rm_2 + \cdots + Rm_s$$
.

Suppose the cannonical mapping

$$M \longrightarrow M/\mathfrak{m}M$$
 $(m_i \longmapsto \overline{m}_i, \forall i=1,2,\dots,t),$

and $M/mM = K\bar{m}_i + \cdots + K\bar{m}_i$.

Then, it follows that $M = Rm_1 + \cdots + Rm_r + mM$.

By Lemma 2.5 (Nakayama's Lemma), $mM = \{0\}$. Therefore, $\{m_1, \dots, m_t\}$ is a minimal generating system of M if and only if $\{\bar{m}_1, \dots, \bar{m}_t\}$ is a basis of M, mM over

the field K, and thus $\mu(M) = \dim_{\mathbb{Z}}(M/\mathfrak{m}M)$.

(ii) Let $\{m_1, \dots, m_t\}$ be a minimal generating system of M. Then, as in the proof of (i), $\{\bar{m}_1, \dots, \bar{m}_t\}$ is a basis of M/mM over K.

If
$$\sum_{i=1}^{t} r_i m_i = 0$$
, then $\sum_{i=1}^{t} \overline{r}_i \overline{m}_i = 0$.

This implies $\overline{r}_i = 0$ in K for $i = 1, 2, \dots, t$.

Since K=R/m, $\overline{r}_i=0$ implies that $r_i \in m$ for all $i=1,2,\dots,t$.

(iii) We assume that

$$M = Rm_1 + \cdots + Rm_i$$
 $(m_i \in M \text{ for } i = 1, 2, \dots, t).$

Then, as before, $\{\bar{m}_1, \dots, \bar{m}_t\}$ is a generating system of M/mM.

Thus we have a basis $\{\bar{m}_{i_1}, \dots, \bar{m}_{i_r}\} \subset \{\bar{m}_1, \dots, \bar{m}_i\}$ of M/mM over K. Then $\{m_{i_1}, \dots, m_{i_s}\}$ is a minimal generating statem of M. ///

For a finitely generated R-module M, we put

 $\mu_{\mathfrak{p}}(M)$ = the number of elements in a shortest generating system of the $R_{\mathfrak{p}}$ -module $M_{\mathfrak{p}}$.

for each $p \in Spec(R)$. Further, for $r \in \mathbb{N} (=\{0,1,2,3,4,\cdots\})$, we define an ideal

$$I(M,r) = \sum_{\substack{(m_1,\dots,m_r) \in M}} \operatorname{Ann}(M/\langle m_1,\dots,m_r \rangle),$$

where the sum is taken over all subsets of M, consisting of r elements. It is clear that (a) I(M,0) = Ann (M), (b) $I(M,r) \subset I(M,r+1)$ for all $r \in \mathbb{N}$, (c) I(M,r) = R if $r \geq \mu(M)$ and (d) $I(M_S,r) = I(M,r)_S$ for any multiplicative closed set $S \subset R$.

Proposition 3.2. For $\mathfrak{p} \in \operatorname{Spec}(R)$,

$$\mu_{\mathfrak{p}}(M) \geq r+1$$
 if and only if $\mathfrak{p} \subset I(M,r)$.

Proof. Suppose $\mu_{\mathfrak{p}}(M) \geq r+1$. If $I(M,r) \subset \mathfrak{p}$, then $I(M,r)_{\mathfrak{p}} = R_{\mathfrak{p}}$ and thus $I(M_{\mathfrak{p}},r) = R_{\mathfrak{p}}$. Then, by (c), $\mu(M_{\mathfrak{p}}) \leq r$. This contradicts to our assumption $\mu_{\mathfrak{p}}(M) = \mu(M_{\mathfrak{p}}) \geq r+1$.

Therefore $I(M,r) \subset \mathfrak{p}$.

Conversely, suppose $\mathfrak{p} \supset I(M,r)$. If $\mu_{\mathfrak{p}}(M) \leq r$, then $I(M_{\mathfrak{p}},r) = R_{\mathfrak{p}}$. Hence $I(M,r)_{\mathfrak{p}}$

On the Minimal Generating Systems of Modules and Projective Modules over Semilocal Domains 9 $=R_n$ and I(M,r) $\subset p$. This is a contradiction. ///

Definition 3.3. (i) Let M be a finitely generated R-module. An element $m \in M$ is said to be basic at $p \in Spec(R)$ if $\bar{m} \in p M_p$, where $M \longrightarrow M_p(m \longrightarrow \bar{m})$.

(ii) A submodule $U \subset M$ is called k-times basic for some $k \in \mathbb{N}$ at $\mathfrak{p} \in \operatorname{Spec}(R)$ if $\mu_{\mathfrak{p}}(M) - \mu_{\mathfrak{p}}(M/U) \geq k$.

Let X be the J-spectrum of R and let M be a finitely generated R-module. For each $m \in M$, we define that

$$X(m) = \{ \mathfrak{p} \in X \mid m \text{ is basic at } \mathfrak{p} \}$$

By Lemma 3.1, $m(\subseteq M)$ is basic at $p \subseteq \mathfrak{B}(\mathfrak{A})$ if and only if the image \overline{m} of m in the R-module $M/\mathfrak{A}M$ is basic at p, where \mathfrak{A} is an ideal of R.

By the above definitions, we have the following properties ([10]).

Property 3.4. With the above notations, the followings hold.

- (i) If X is Noetherian and $d=\dim X<\infty$, then $X(m)\cap \mathfrak{B}(\mathfrak{A})$ has only finitely many minimal elements.
 - (ii) Under the hypothesis of (i), we put

$$u_n = \operatorname{Max} \{ \mu_n(M) + \dim \mathfrak{B}(\mathfrak{p}) | \mathfrak{p} \in X(m) \}.$$

Then there are only finitely many $\mathfrak{p} \subset X(m)$ with

$$\mu_n(M) + \dim \mathfrak{B}(\mathfrak{p}) = u_*$$

(iii) Under the hypothesis of (i), let $M = Rm_1 + Rm_2 + \cdots + Rm_i = \langle m_1, m_2, \cdots, m_i \rangle$ $(m_i \in M \text{ for } i=1, 2, \cdots, t)$ and

$$\mu_{n}(M) + \dim \mathfrak{B}(\mathfrak{p}) < t \text{ for all } \mathfrak{p} \in X(m_{i}).$$

Then there exist elements $a_1, a_2, \dots, a_{i-1} \in \mathbb{R}$ such that

$$M = \langle m_1 + a_1 m_t, m_2 + a_2 m_t, \cdots, m_{t-1} + a_{t-1} m_t \rangle$$
.

Proposition 3.5. Let X=J(R) be Noetherian of finite Krull dimension. Then, for a finitely generated R-module M,

$$\mu(M) \leq u = \max \{ \mu_{\mathfrak{p}}(M) + \dim \mathfrak{B}(\mathfrak{p}) | \mathfrak{p} \in X \cap \operatorname{Supp}(M) \}.$$

Proof. Let $\mu(M) = t$ and $M = \langle m_1, m_2, \dots, m_i \rangle$. We put

$$u = \operatorname{Max} \{ \mu_{\mathfrak{p}}(M) + \operatorname{dim} \mathfrak{B}(\mathfrak{p}) | \mathfrak{p} \in X \cap \operatorname{Supp} (M) \}$$

$$(= \operatorname{Max} \{ \mu_{\mathfrak{p}}(M) + \operatorname{dim} \mathfrak{B}(\mathfrak{p}) | \mathfrak{p} \in X(m_i) \}).$$

If $u \ge t$, then we have nothing to prove.

Assume that u < t. Then

$$\mu_{\mathfrak{p}}(M) + \dim \mathfrak{B}(\mathfrak{p}) < t \text{ for all } \mathfrak{p} \in X(m_t).$$

By (iii) of property 3.4, there are $a_1, \dots, a_{i-1} \in \mathbb{R}$ such that

$$M = \langle m_1 + a_1 m_i, m_2 + a_2 m_i, \dots, m_{i-1} + a_{i-1} m_i \rangle$$
.

Hence $\mu(M) \le t-1$. This is a contradiction. ///

Corollary 3.6. (i) Let α be an ideal of R and

$$u=Max \{\mu_{\mathfrak{p}}(\mathfrak{A})+\dim \mathfrak{B}(\mathfrak{p})|\mathfrak{p} \in \mathfrak{B}(\mathfrak{A})\}.$$

Then $\mu(\mathfrak{A}) \leq \text{Max } \{u, d+1\}$, where dim J(R) = d.

(ii) Let R be a semilocal ring with maximal ideals m_1, m_2, \dots, m_t and let M be a finitely generated R-module, $u=\max\{\mu_{m_i}(M)|i=1,2,\dots,t\}$. Then $\mu(M)\leq u$.

Proof. (i) For each $\mathfrak{p} \in \operatorname{Spec}(R)$ such that $\mathfrak{A} \subset \mathfrak{p}$, we have $\mathfrak{A}_{\mathfrak{p}} = R_{\mathfrak{p}}$. Thus, in this case $\mu_{\mathfrak{p}}(\mathfrak{A}) = 1$. Moreover, dim $\mathfrak{B}(\mathfrak{p}) \leq \dim J(R)$. Therefore, we have

Max
$$\{\mu_{\mathfrak{p}}(\mathfrak{A}) + \dim \mathfrak{B}(\mathfrak{p}) \mid \mathfrak{A} \subseteq \mathfrak{p} \subseteq J(R)\} \leq d+1$$

Therefore,

$$\operatorname{Max} \{ \mu_{\mathfrak{p}}(\mathfrak{A}) + \operatorname{dim} \mathfrak{B}(\mathfrak{p}) | \mathfrak{p} \in X \cap \operatorname{Supp} (\mathfrak{A}) \} \leq \operatorname{Max} \{ \mathfrak{u}, \mathfrak{d} + 1 \}.$$

By proposition 3.5, $\mu(\mathfrak{A}) \leq \text{Max } \{u, d+1\}$.

(ii) Since R is a semilocal ring, $X=J(R)=\operatorname{Max}(R)$ and dim $J(R)=\operatorname{dim}\operatorname{Max}(R)$ =0 ([6],[10]). Thus, in the formula

$$u=\operatorname{Max} \{\mu_{\mathfrak{p}}(M)+\dim \mathfrak{B}(\mathfrak{p})|\mathfrak{p}\in X\cap \operatorname{Supp}(M)\}$$

On the Minimal Generating Systems of Modules and Projective Modules over Semilocal Domains 11 in Proposition 3.5, we have dim $\mathfrak{B}(\mathfrak{p})=0$ for all $\mathfrak{p} \in X \cap \operatorname{Supp}(M)$. Moreover, since $\mathfrak{p} \in X \cap \operatorname{Supp}(M)$ implies that \mathfrak{p} is maximal ideal, $\mu(M) \leq \operatorname{Max}_{i=1,2,\dots,i} \{\mu_{\mathfrak{m}_i}(M)\}$. ///

Theorem 3.7. Ket (R, m) be a Noetherian local ring and let $\mathfrak{A} \subset \mathfrak{m}$ be an ideal of R with $\xi \in \mathfrak{m}/\mathfrak{A}$ which is not a zero divisor in R/\mathfrak{A} . We put $\xi = x + \mathfrak{A}$ and R = R/(x) and consider the cannonical mapping

$$\eta: R \longrightarrow R/(x) \ (a \longmapsto \overline{a}).$$

Then, (i) $\alpha = \langle a_1, a_2, \dots, a_t \rangle$ if and only if $\overline{\alpha} = \langle \overline{a}_1, \overline{a}_2, \dots, \overline{a}_t \rangle$.

(ii)
$$\mu(\mathfrak{A}) = \mu(\overline{\mathfrak{A}})$$
 where $\eta(\mathfrak{A}) = \overline{\mathfrak{A}}$.

Proof. Since $\xi \in m/\mathfrak{A}$ and $\xi = x + \mathfrak{A}$, $x \in m$. By our hypothesis, there is not any element y in $R \setminus \mathfrak{A}$ such that $yx \in \mathfrak{A}$. Since $(x) \subset m$, R is a local ring with it maximal ideal $m/(x) = \overline{m}$.

It follows that ocm.

Since R is a Noetherian local ring, so is R. Hence \mathfrak{A} and \mathfrak{A} are finitely generated ideals. We assume $\mathfrak{A} = \langle m_1, m_2, \cdots, m_r \rangle$, where $\{m_1, \cdots, m_r\}$ is a minimal generating system of \mathfrak{A} . Then $m_i \in (x)$ for $i = 1, 2, \cdots, r$, because that if so, then there exists an element $y \in R$ such that $a_i m_i = yx$ and thus ξ is a zero divisor in m/\mathfrak{A} .

Therefore, we have $\eta(m_i) = \bar{m}_i \neq 0$ for $i = 1, 2, \dots, r$.

It is clear that $\overline{n} = \langle \overline{m}_1, \overline{m}_2, \dots, \overline{m}_r \rangle$. Thus, it remains to prove that $\{\overline{m}_1, \overline{m}_2, \dots, \overline{m}_r\}$ is a minimal generating system of \overline{n} .

We suppose that there are elements $a_1, a_2, \dots, a_{i-1}, a_{i+1}, \dots, a_r$ in R such that

$$\bar{m}_i = \bar{a}_1 \bar{m}_1 + \dots + \bar{a}_{i-1} \bar{m}_{i-1} + \bar{a}_{i+1} \bar{m}_{i+1} + \dots + \bar{a}_{i-1} \bar{m}_{i+1}$$

This means that

$$m_i + (x) = a_1 m_1 + \dots + a_{i-1} m_{i-1} + a_{i+1} m_{i+1} + \dots + a_r m_r + (x),$$

and thus there exists an element $a \in R$ satisfying

$$m_i = a_i m_i + \dots + a_{i-1} m_{i-1} + a_{i-1} m_{i-1} + \dots + a_r m_r + ax$$

Since

$$m_i - (a_i m_i + \cdots + a_{i-1} m_{i-1} + a_{i+1} m_{i+1} + \cdots + a_r m_r) \subseteq \emptyset$$

we have $a \in \mathfrak{A}$. Therefore, there exist elements ℓ_1, \dots, ℓ_r in R such that

$$a = \ell_1 m_1 + \cdots + \ell_i m_i + \cdots + \ell_i m_i$$

In consequence, we have

$$m_i - (a_1 m_1 + \dots + a_{i-1} m_{i-1} + a_{i+1} m_{i+1} + \dots + a_r m_r) = \ell_1 m_1 x + \dots + \ell_r m_r x$$

and thus
$$m_i(1-\ell_i x) = \sum_{\substack{k=1\\k\neq i}}^r (a_k + \ell_k x) m_k$$
.

Since $1-\ell x$ is a unit in R, $m_i = \sum_{\substack{k=1 \ k \neq i}}^r \frac{1}{(1-\ell_i x)} (a_k + \ell_k x) m_k$. We have a contradition.

Therefore, $\{\overline{m}_1, \dots, \overline{m}_r\}$ is a minimal generating system of $\overline{\mathfrak{A}}$. That is, $\mu(\overline{\mathfrak{A}}) = \mu(\overline{\mathfrak{A}})$. ///

§4. Projective Modules

A R-module M is called a *projective* R-module if there is a R-module M' such that $M \oplus M'$ is a free R-module (R is a ring). Sometimes, M is called *locally free* if M_m is afree R_m -module for every maximal ideal m of R. From the above definitions about projective modules, We easily see the following facts ([2],[7],[10]).

Property 4.1. (i) For any multiplicative closed subsets S of R, if M is a projective R-module, then M_S is a projective R_S -module.

- (ii) If M is a projective R-module and $P \subset R$ is a subring such that R is a free P-module, then M is also a projective P-module.
- (iii) If M is a locally free R-module, then $M_{\mathfrak{p}}$ is a free $R_{\mathfrak{p}}$ -module for all $\mathfrak{p} \in Spce (R)$.

Let S be a multiplicative closed subset of R and let M be a R-module.

Definition 4.2. If $U \subset M$ is a submodule of M, then we define such that

$$S(U) = \{m \in M \mid \text{there is an } s \in S \text{ with } sm \in U\}$$

which is called the S-component of U. We also define such that

 $\mathscr{U}(M_S)$ = the set of all submodules of the R_S -module M_S

On the Minimal Generating Systems of Modules and Projective Modules over Semilocal Domains 13 and

$$\mathscr{U}_{S}(M) = \{U \subset M \text{ (submodule)} \mid S(U) = U\}.$$

It is obvious that

- ① $U \subset S(U)$, ② S(S(U)) = S(U), and
- ③ $S(\bigcap_{i=1}^{n} U_i) = \bigcap_{i=1}^{n} S(U_i)$ where $U_i(i=1,2,\dots,n)$ is a submodule of M.

Proposition 4.3. We have the inclusion-preserving bijective mapping

$$\alpha: \mathscr{U}_S(M) \longrightarrow \mathscr{U}(M_S) \ (U \longrightarrow U_S).$$

The inverse mapping asigns to each $U' \in \mathscr{U}(M_S)$ the submodule $i^{-1}(U')$, where $i: M \longrightarrow M_S$ is the cannonical mapping.

Proof. For each $U' \in \mathscr{U}(M_S)$ (i.e., U' is a submodule of M_S), let $U = i^{-1}(U')$. If $m \in S(U)$ (i.e., there is an $s \in S$ with $sm \in U$), then $i(sm) = \frac{s}{1}i(m) \in U'$, Thus

$$\frac{1}{s} \cdot \frac{s}{1} i(m) = i(m) \in U'$$

because $\frac{1}{s} \in R_S$. This means that $m \in U$. It follows that U = S(U) and $U \in \mathscr{U}_S(M)$. Therefore $\alpha^{-1}(U') = i^{-1}(U') = U$ is well-defined.

Moreover, it clear that $U_S \subset U'$ because that for each $\frac{m}{s}(m \in U, s \in S) \in U_S = \frac{1}{s}i(m)$ $= \frac{m}{s} \in U'$. For each element $\frac{m}{s} \in U'$, $\frac{m}{1} \in U'$, and so that $m \in U$, Hence, $\frac{m}{s} \in U_S$ It follows that $U' = U_S$. ///

With the above notations, we can easily prove the followings.

(a) For $\mathfrak{p} \in \operatorname{Spec}(R)$,

$$S(\mathfrak{p}) = \{r \in R \mid \text{there is an } s \in S \text{ with } sr \in \mathfrak{p}\} = \mathfrak{p} \text{ if } \mathfrak{p} \cap S = \phi,$$

$$R \text{ if } \mathfrak{p} \cap S \neq \phi.$$

(b) For an ideal α of R such that $\alpha = \bigcap_{i=1}^{n} \mathfrak{p}_i$ with $\mathfrak{p}_i \in \operatorname{Spec}(R)$, we have

$$S(\mathfrak{A}) = \bigcap_{\mathfrak{p}_i \cap \mathfrak{s} = \mathfrak{f}} \mathfrak{p}_i$$

because that

$$S(\mathfrak{A}) = \bigcap_{i=1}^{n} S(\mathfrak{p}_{i}) = \bigcap_{\mathfrak{p}_{i} \cap S = \emptyset} S(\mathfrak{p}_{i}) = \bigcap_{\mathfrak{p}_{i} \cap S = \emptyset} \mathfrak{p}_{i}$$

by (a).

Lemma 4.4. Let $i: R \longrightarrow R_S$ be the cannonical mapping and $\Sigma = \{ p \in Spec (R) \}$ $p \cap S = \emptyset \}$, where S is a multiplicative closed subset of R.

- (i) Every $\beta \in \text{Spec } (R_S)$ is of the form $\beta = \mathfrak{p}_S$ with a uniquely determined \mathfrak{p} .
- (ii) If R is a unique factorization domain (a factorial ring) and $0 \notin S$, then R_S is also a unique factorization domain.

Proof. (i) By Proposition 4.3,

$$\alpha: \mathscr{U}_{S}(R) \longrightarrow \mathscr{U}(R_{S})$$

is a bijective mapping. By (a) above, if $\mathfrak{p} \cap S = \mathfrak{A}$, then $\mathfrak{p} = \mathscr{U}_S(R)$. Therefore, it follow that $\Sigma \subset \mathscr{U}_S(R)$.

In particular, in the cannonical mapping

$$i: R \longrightarrow R_{S}$$

 $i^{-1}(\beta) = \mathfrak{p}$ is a pime ideal of R and $\mathfrak{p}_S = \beta$. In this case, $\mathfrak{p} \in \Sigma$ and by the bijectivity of α such a prime ideal $\mathfrak{p} \in \Sigma$ is determined uniquely.

(ii) By our assumption, R is an integral domain. Hence $i:R\longrightarrow R_S$ is a monomorphism. Since $0\not\in S$, if π is a prime element of R and $(\pi)\cap S=\phi$, then $\frac{\pi}{1}$ is a prime element of R_S . If $(\pi)\cap S\neq 0$, then there is an element $a\not\in R$ such tha $a\pi\not\in S$. Thus

$$a \cdot \frac{1}{a\pi} = \frac{1}{\pi} \in R_S$$

and hence $\frac{\pi}{1}$ is a unit in R_S . It follows that every element $\neq 0$ in R_S is either a unit or a product of prime elements.

That is, R_S is a unique factorization domain. ///

Definition 4.5. For a finitely generated projective R-module P and $\mathfrak{p} \subseteq \operatorname{Spec}(R)$, $\mu_{\mathfrak{p}}(P)$ is called the *rank* of P at \mathfrak{p} . P is called of rank r if $\mu_{\mathfrak{p}}(P) = r$ for all $\mathfrak{p} \subseteq \operatorname{Spec}(R)$.

Lemma 4.6. For a finitely generated projective R-module P with rank r at $\mathfrak{p} \in$

On the Minimal Generating Systems of Modules and Projective Modules over Semilocal Domains 15 Spec (R), there exists an element $f \in R \setminus \mathfrak{p}$ such that P_f is a free R_f -module with rank r.

Proof. Let $\{\omega_1, \dots, \omega_r\}$ be a minimal generating system of the $R_{\mathfrak{p}}$ -module $P_{\mathfrak{p}}$. We can choose the ω_i as images of elements ω_i^* of P, for if we multiply the ω_i by a common denominator, we again get a minimal generating system of $P_{\mathfrak{p}}$.

Consider the exact sequence

$$0 \longrightarrow K \longrightarrow R^r \xrightarrow{\alpha} P \longrightarrow C \longrightarrow 0$$

where $\alpha(e_i) = \omega_i^*$ $(e_i = (0, 0, \dots, 1, 0, \dots, 0) \in \mathbb{R}^r)$, Ker $\alpha = K$ and $C = \operatorname{coker} \alpha$. By our hypothesis, $P_{\mathfrak{p}} = (R_{\mathfrak{p}})^r$ and $K_{\mathfrak{p}} = 0 = C_{\mathfrak{p}}$. By (i) of Proposition 2.2, we have an element $f \in \mathbb{R} \setminus \mathfrak{p}$ such that $C_f = \{0\}$. By (i) of Property 4.1, P_f is a projective R_f -module, and thus

$$0 \longrightarrow K_f \longrightarrow R_f \longrightarrow P_f \longrightarrow 0$$

is a split squence. That is, $R_f \cong K_f \oplus P_f$, and thus K_f is a finitely generated R_f -module. As $K_{\mathfrak{p}} = \{0\}$, by (i) of Proposition 2.2, there exists an $g \in \mathbb{R} \setminus \mathfrak{p}$ such that $K_g = \{0\}$. Thu $s(K_f)_g = (K_g)_f = K_{fg} = \{0\}$. Therefore, we have

$$(R_{fg})^r \cong P_{fg}.$$
 ///

Theorem 4.7. Let R be a semi-local domain with maximal ideals m_1, m_2, \dots, m_t such that each local ring R_{m_t} is a principal ideal domain for $i=1,2,\dots,t$. Then all finitely generated projective $R[X_1,\dots,X_n]$ -modules are free.

Proof. Our proof is divided into three steps.

(1) We claim that R is a principal ideal domain. Since R is a semi-local ring, we have J(R) = Max(R) and

dim
$$J(R)$$
 = dim Max (R) = 0.

By Corollary 3.6, for

$$u = \text{Max } \{\mu_{\mathbf{p}}(\mathbf{x}) + \text{dim } \mathfrak{B}(\mathbf{p}) | \mathbf{p} \in \mathfrak{B}(\mathbf{x})\},$$

 $\mu(\mathfrak{A}) \leq \operatorname{Max} \{u, d+1\}$, where \mathfrak{A} is an ideal of $R, p \in J(R)$ and dim J(R) = d. Thus $\mu(\mathfrak{A}) = \operatorname{Max} \{u, 1\}$.

On the other hand $\mathfrak{p} \in J(R)$ implies that \mathfrak{p} is a maximal ideal of R because J(R) = Max (R). By our hypothesis, if or is a nonzero ideal, then $\mu_{\mathfrak{p}}(\mathfrak{A}) = 1$.

Therefore $\mu(\mathfrak{A})=1$ and R is a principal ideal domain.

- (2) n=0. Then, by (1), R is a principal ideal domain, and since every finitely generated projective module over a principal ideal domain is a free module by Lemma 2.1, our assertion is correct.
- (3) n>0. We suppose that our theorem was proved for all positive integers $\leq n-1$. We stall put such that

S=the multiplicative closed set of all monic polynomials in $R[X_1]$.

We assume that M is a finitely generated projective $R[X_1, \dots, X_n]$ -module. Then M_S is also a finitely generated projective $R[X_1, X_2, \dots, X_n]_S$ -module. Note that $R[X_1, X_2, \dots, X_n]_S = R[X_1]_S[X_2, \dots, X_n]$. Hence, if we can prove that $R[X_1]_S$ is a principal ideal domain, then by our inductive hypothesis M_S is a free $R[X_1, \dots, X_n]_S$ -module with finite rank. By Lemma 4.6, there is an element $f \in S$ such that M_f is a free $R[X_1, \dots, X_n]_S$ -module. By Theorem 1.1 (Quillen-Suslin), M is a free $R[X_1, \dots, X_n]$ -module.

Therefore we have to prove that $R[X_1]_S$ is a principal ideal domain. Since $R[X_1]$ is a factorial ring (Note that every principal ideal domain is a factorial ring), by (ii) of Lemma 4.4 $R[X_1]_S$ is also a factorial ring. We put $K = R[X_1]_S$.

For $\mathfrak{p} \subseteq \operatorname{Spec}(K)$ with $\mathfrak{p} \cap R = \{0\}$, $K_{\mathfrak{p}}$ is a ring consisting of fractions in $Q(R) [X_1]$ where Q(R) is the quotient field of R. Thus the height of \mathfrak{p} is zero or one, and hence \mathfrak{p} is a principal ideal.

Next, we assume that $\mathfrak{p} \cap R \neq \{0\}$. Since R is a principal ideal domain (and thus R is a factorial ring), there exists a prime element $p \in R$ such that $\mathfrak{p} \cap R = (p)$. Then $K/pK = R/(p)(X_1)$ is a field, hence pK is a maximal ideal of K. In particular, $pK = \mathfrak{p}$, and thus \mathfrak{p} is a principal ideal of K. In consequence, any $\mathfrak{p} \neq (0)$ is therefore generated by a prime element π of K.

From this, we can prove that $K = R[X_1]_S$ is a principal ideal domain as follows.

For $a_1, a_2 \in K \setminus \{0\}$, we assume that c is the greatest common divisor of a_1 and a_2 . For $\mathfrak{p} = (\pi) \in \operatorname{Spec}(K)$, we assume that $\pi^{\mathfrak{p}_1}|a_1$ and $\pi^{\mathfrak{p}_2}|a_2$. Then, for $v = \operatorname{Min}\{v_1, v_2\}$, $\pi^{\mathfrak{p}}|c$. Hence, it follows that (a_1, a_2) $K_{\mathfrak{p}} = (c)K_{\mathfrak{p}}$ for all $\mathfrak{p} \in \operatorname{Spec}(K)$. Thus, for every maximal ideal \mathfrak{m} of K, On the Minimal Generating Systems of Modules and Projective Modules over Semilocal Domains 17

$$(a_1, a_2) K_m = (c)K_m$$
, i.e., $(a_1, a_2)_m = (c)_m$.

By Lemma 2.4, we have $(a_1, a_2) = (c)$. ///

References

- [1] S.M. Bhatwadeker and R. Rao; On a questions of Quillen, Transaction of A.M.S. Vol.279, pp. 801~810, (1983).
- [2] S.M. Bhatwadeker and A. Roy; Some Theorems about projective Modules over polynomial Rings, J. of Algebra, Vol. 86 pp. 150~158, (1984).
- [3] M. Boratynski; A Note on Set-Theoretic Complete Intersection Ideals, J. of Algebra Vol. 54, pp. 1~59 (1978).
- [4] M. Boratynski; When is an ideal generated by a Regular sequence?, J. of Algebra Vol. 57, pp. 536~241 (1979).
- [5] M.R. Gabel; Generation and Projective Generation of ideals, J. of Algebra Vol.76, pp. 186~191 [1982].
- [6] S. litaks: Algebraic Geometry, Springer-Verlag (1981).
- [7] M.C. Kang; Projective Modules over Some polynomial Rings, J. of Algebra Vol. 39, pp. 65~76 (1979).
- [8] N.M. Kumar; Complete intersections, J. Math. Kyoto Univ. Vol.17, pp. 533~538 (1977).
- [9] N.M. Kumar; On two conjectiures about polynomial Rings, Invent. Math. Vol. 40, pp. 226~236 (1978).
- [10] E. Kunz; Introduction to commutative Algebra and Algebraic Geometry, Birkhäuser, Boston (1985).
- [11] S. Mandal; Basic Elements and Cancellation over Laurent Polynomial Rongs, J. of Algebra, Vol. 79, pp. 251~257 (1982).
- [12] S. Mandal; On efficient generation of ideals, Invent. Math., Vol.75, pp.59~67 (1984).
- [13] D. Quillen; Projective Modules over polynomials Rings, Invent. Math. Vol. 36, pp. 167 ~171 (1976).
- [14] R. Rao; Stability Theorems for Overrings of polynomial Rings I, J. of Algebra, Vol.78, pp. 437~444 (1982).
- [15] Joseph J. Rotman; An Introduction to Homological Algebra, Accademic Press (1979).
- [16] A. Suslin; Projective Modules over Polynomial Rings, Dokl-Akad, Nauk S.S.S.N. Vol.26 (1976).
- [17] R.G. Swan; Projective Modules over Laurent Polynomial Rings, Transaction of A.M.S. Vol.237, pp. 111~120 (1978).