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REGULAR COVERINGS AND

MANIFOLD CRYSTALLIZATIONS

YOUNKI CHAE AND JAEUN LEE

1. Introduction

Let G be a finite simple connected graph with vertex set V( G) and
edge set E(G). We denote the set of vertices adjacent to v E V(G) by
N(v) and call it the neighborhood of a vertex v. By lXI, we denote the
cardinality of a finite set X. Let A(G) be the adjacency matrix of G.
Then the characteristic polynomial of G is the characteristic polynomial
det(,xI - A(G)) of A(G). We denote the characteristic polynomial of
G by ~(G;,x). A zero of ~(G;,x) is called an eigenvalue of G. Let C
denote the field of complex numbers, and let D be a digraph. A weighted
digraph is a pair DIM = (D, w), where w : E(D) ~ C is a function on
the set E(D) of edges in D. We call D the underlying digraph of DIM
and w the weight function of DIM' Given any weighted digraph DIM, the
adjacency matrix A(Dw ) = (aij) of D w is the square matrix of order
IV(D) I defined by

if ViVj E E(D),

otherwise,

and its characteristic polynomial is that of its adjacency matrix. We
shall denote the characteristic polynomial of DIM by ~(DIM; A).

Let Gbe the digraph obtained by replacing each edge e of G with
a pair of oppositely directed edges, say e+ and e-. We denote the set
of directed edges of Gby E(G). Note that the adjacency matrix of the
graph G is the same as that of the digraph G.
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A graph Gis called a covering of G with the projection p: G--+ G if
there is a surjection p : V(G) -+ V(G) such that piN(v) : N(v) --+ N(v)
is a bijection for any vertex v E V(G) and v E p-l(v). We say that Gis
an n-fold covering of G if the covering projection plv(G) is n-to-one.

2. Regular coverings

A covering p : G-+ G is said to be regular if there is a subgroup A of
the automorphism group Aut(G) of Gacting freely on Gsuch that G/A
is isomorphic to G.

By e- l we mean the reverse edge to an edge e E E(G). Let r be a
finite group. A r -voltage assignment of G is a set function q, from the
set E(G) to the group r such that q,(e-1) = (q,(e»-l for all e in E(G).
The values of 4> are called r-voltages and r is called the voltage group.

The voltage covering graph G x.p r derived from 4> : E(G) -+ r has
as its vertex set V(G) x r and as its edge set E(G) x r, so that an
edge of G x.p r joins a vertex (u,g) to (v,4>(e)g), for e = uv E E(G)
and g E r. A vertex (u,g) is denoted by ug , and an edge (e,g) by
ego The voltage group r acts on G x.p r as follows: for every g E r,
let c)g : G x.p r -+ G x.p r denote the graph automorphism defined by
c)g(vg') = V g'g-1 on verteces and .g(eg,) = eg'g-1 on edges. Then the
natural map G x.p r -+ (G x.p r)/r ~ G is a regular IrI-fold covering
projection. Gross and Tucker [5] showed that every regular covering of
G arises from some voltage assignment of G.

From now on, we consider the voltage group r as a finite abelian
group. Note that r is isomorphic to Zn1 X Zn2 X ••• X Znt. For all a =
1,··· ,f, let pa denote the generater of Zn.. so that Zn.. = {p~, P~, ... ,p:.. -1}.

Let q, be an r-voltage assignment of G. For each 'Y E r, let G(.p,'"() de­
note the spanning subgraph of the digraph Gwhose directed edge set is
4>-I('Y), so that the digraph Gis the edge-disjoint union of spanning sub­

graphs G(.p,'"() , 'Y E r. Let X = {x}, X2,··· ,xn} and Y = {YI, Y2,··· ,Ym}.
We define an order relation ~ on X x Y as follows: for any two vertices
(Xi, Yp) and (x;, Yq) of X x Y, (Xi, Yp) :5 (X;, Yq) if and only if either p < q
or p = q and i ~ j. From now on, we assume that the order relation on
a product of two ordered sets defined in this way. We define an order
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relation :5 on Zna by l :5 pm if and only if f :5 rn. This order relation
gives an order relation on r. For any "( Er, let P(/) be the permutation
matrix associated with"( under the above order. We note that the set of
vertices of G x 4> r also has the corresponding order relation if an order
relation on V(G) is given.

To find the adjacency matrix A(G x 4> r) according to this order rela­
tion, we note that an edge of the covering G x 4> r joining vertices (u, ,,(')
and (v,"(") gives entry 1 in the matrix A(G(t/>,Y») ® Ph) if uv E E(G),
"(" = 4>(uvhi and 4>(uv) = "(, where ® means the tensor product of two
matrices. Note that the (rn, n)th block of A ® B is Abmn, where bmn is
the (rn, n) th entry of B. Clearly, for each a = 1, ... ,f, the permutation
matrix P(Po) associated with Po is the no x no matrix

010
o 0 1

001
1 0

and it is similar to

1
(0 0

D(po) def (~

o

where (0 = exp( ;: i) for 1 :5 a :5 f.

Let "( E Znl X Zn2 X ••• X Zn(. Then"( = (p~l, p~2, ... ,p;(). By the
virtue of properties of the tensor product of matrices and the given order
relation on r, we have

P("() =

o 1
o 0 1

o
1

o

o 1
o

k 1 0 1
0 0 1

®...®

0
1

o

o 1
o
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which is similar to D(pl)k1 @.··D(Pt)kt . We summarize our discussion
as follow.

THEOREM 1. Let r = Zn1 X Zn2 X ••• X Znt and let 4> be a r -voltage
assignment ofG. Then, the adjacency matrix ofa regular covering graph
G x«> r is

~ A (G(-I, ( Jo1 Jot») 0 P(p~l, ... ,p~t),LJ 't'. P1 •... •Pt
(k1 •••• .let)

wbere P(p~l , ... ,p~t) is tbe pennutation matrix associated witb (p~l , ... ,
p~t) and tbe adjacency matrix is similar to

2: A (G(<(>.(P:1.....p:t») ® (D(pl)k1@... D(pt)kt ) .
(k1..·· .kt>

Let 4> be a r-voltage assignment of G. For each (Sb'" ,St) with
o :=:; Sa < na and 1 :=:; a :=:; l, we define a weight function W(Sl .....St)(</» :
E(G) ~ C by

t t

W(Sl •... ,St)(</»(e) = IT «(~a)Sa for </>(e) = IT p~a.
a=1 a=1

Note that the nonzero blocks of the matrix

2: A (G(<(>,(P:1,...•P:t») ® (D(pl)k1@.. ·D(pt)kt )
(k1,·.. ,kt>

are diagonal ones and its (o(Sb'" ,St), O(Sb'" ,st»-th diagonal block
IS

I: A (G(<(>, (p:1.... •p:t ») «(f1 )Sl «(:2 )S2 ... «(tt )St,
(k1,'" ,kt)

where O(SI"" ,St) = St(nl n2 ... nt-d + St-l(nl n2 ... nt-2) + ... +
SI + 1. Thus, we have

L A (G(<(>,(p:1, ...•p:t») @ (D(Pl)k1@... D(Pl)kt )
(k1 .···.kt )

EB A (GW('b'" "t)(<(») •
(Sl ,'" ,st>

We summarize our discussion as follow.
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THEOREM 2.

~(GXt{>rj.x)= IT ~(tl('1o" .. "t)(t{»j.x)·
(Si.··· ,sd

303

Now, we introduce a calculation for the characteristic polynomial

~ (GIA1(.l •••. "t)(t{»;.x) • To do this, we introduce some notations. An undi­
rected simple graph S is call a basic figure if each component of S is either
a cycle Cq (q = 1,3,4"" ) or K 2 • For a basic figure S, let 11:(8) be the
number of components of 8 and C(8) be the set of all cycles in 8. Let
Qj(G) be the set of all subgraphs of G which are basic figures with j
vertices. Note that every cycle C in G induces two directed cycles in
G, say C+ and C-. Then, the following theorem can be found in [9]
(Theorem 5)

THEOREM 3. Let r be a finite abe1ian group and let 4> be a r-voltage
assignment of G. Let w be one ofW(Sl .... ,st}(4». Tben, we bave

wbere Re (w(C+» is tbe real part of IT w(e). Moreover, if 4>(e) is of
eEC+

order 2 for each e E E(G), tben

wbere N IA1(S) is tbe number of cycles in 8 such tbat w(C+) = -1.

Note that the second statement of Theorem 3 is different that of
Theorem 5 in [9] but they are equal because every eigenvahies of any
permutation matrix associtedwith an element of order 2 is either 1 or -1.



304 Younki Chae and Jaeun Lee

We also note that Theorem and Theorem 2 are true for pseudographs,
but Theorem 3 is not.

Now, we give a theorem which is the pseudograph version for The<r
rem 3. In an undirected pseudograph, two basic figures 81 and 82 are
equivalent if the identity map on the vertex set V( G) induces an isomor­
phism between 81 and 8 2 • We denote the set of equivalence classes of
(lj(G) by [(lj(G)] for j = 1, ... V(G). Let [8] be an element of [(lj(G)].
Then, [8] consists of equivalence classes of K 2 and cycles. Let £ (K2 [8])
be the equivalence classes of the copies of K2 and £ (C [8]) the equivalence
classes of the cycles in [8]. Note that every copies of K 2 in G induces
two directed edges in G, say e+ and e-, and every loop is a cycle of
length 1. Then, by using a method similar to the proof of Theorem 5 in
[9], we can prove the following theorem.

THEOREM 4. Let r be a finite abelian group and let <!J be a r­
voltage assignment ofG. Let w be one ofw(sl,... ,S()(<!J). Then, for each
[8] E [(lj(G)] , the contribution of [8] in the the coeJIicent of >.!V(G)I-j

of~ (Gw; >.) is

(-1t(S) IT (2: w(e+)) (I: (W(e+))_I) 21t"(C[S])/

[eJ Et"(K2 [S) eE[e] eE[eJ

IT ( L Re (W(C+))) ,
[C]Et"(C[S) CE[C]

where Re (w( C+)) is the real part of IT w(e) and 8 is a representative
eEC+

of [8].

3. Applications

IT G is a bipartite graph, then Qj(G) = 0 for 1 ~ j =odd~ IV(G)I.
By theorem 3,
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where w is of the form W( S1 ,'" ,st}(4». Thus for any r -voltage assignment
4>, we have

Because a graph is bipartite if and only if <p(G; -A) = (-I)IV(G)I<p(G; A),
we have the following corollary.

COROLLARY 1. Let G be a bipartite graph and let 4> be a r -voltage
assignment ofG. Then the regular coveringgraph G x t/>r is also bipartite.

Let G be a k-regular graph and let T(G) be the number of spanning
trees of G. Then T(G) = IV(G)I-1<p'(G; k), where <P' denotes the deriv­
ative of the characteristic polynomial <p(G; A) ([1], p. 36). It is known
that <p(G; k) =°for a k-regular graph G. Thus we have,

COROLLARY 2. Let G be a k-regular connected graph and let 4> be a
r-voltage assignment ofG. Then,

(1) G xt/> r is connected if and only if <P(G"'('1' ... "t)(t/»; k) # °fOT all
(Sh··· ,Si) #(0"" ,0).

(2) T(G xt/>r) = j/,T(G) IT <P (G"'(.1 .... ,.t>(t/»;k).
(S1 ,'" ,St )#(0, ... ,0)

The platonic graphs are the graphs whose vertices and edges are the
vertices and the esges of the platonic solids. They named tetrahedron,
cube, octahedron, dodecahedron, and icosahedron. We calculate the
characteristic polynomials of the platonic graphs as examples of our dis­
cussions. The characteristic polynomial of tetrahedron T is well known
because it is isomorphic to the complete graph K4 • It is also known that
the cube Q is the double covering of K 4 which corresponded the voltage
assignment whose values of all edges are the nontrivial element in Z2'
Thus

Now, we describe the remaining platonic graphs as a regular covering
graph of some graphs.
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(p~. 1'2)

Figure 1. The octahedron covers the figure eight graph

Figure 1 shows that the octahedron 0 is a 6-fold regular covering
graph of the figure eight graph :F and the covering projection is that the
outer cycle of length 6 covers the right loop of :F and the two cycles of
length 3 in 0 covers the left loop of :F. Note that the corresponding
Z3 x Z2-voltage assignment 4> of :F is the map which assigns (PI, pg)
on the left loop with clockwise direction and (Pt, P2) on the right loop
with counterclockwise direction. From now on, we consider that all loops
are directed counterclockwise and all edges are directed from the lower
labeled vertex to the higher labeled vertex in the base graph.

Figure 2. The dodecahedron covers the dumbbell graph
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Figure 2 shows that the dodecahedron V covers the dumbbell graph
and the covering projection is the graph homomorphism which preserves
the labelling and the corresponding Zs x Z2-voltage assignment cl> on the
dumbbell graph M is the map which assigns (PI, pg) on the left loop,
(pt, P2) on the right loop and the trival member on the edge between the
vertex 1 and the vertex 2. We describe the icosahedron I as a regular
covering graph of the graph 11 which drawn in Fig 3.

2

2

Figure 3. The icosahedron covers the graph 11

In Figure 3, the covering projection is the graph homomorphism which
preserves the labelling and the corresponding Z3 x Z2-voltage assignment
cl> of 11 is the map which assigns the member (PI, P2) on the left loop, the
(PI, pg) on the right loop, and the members (p~, P2), (PI, pg) and (pi, P2)
on the three edges between the vertices 1 and the vertex 2. We calculate
the characteristic polynomial of Dodecahedron V as an example. Let
( =exp( 2; i). Then, by Theorem 4,

~ (M "'(81 '82)(~);.\) = .\2 _ (((81 + (-81) + (_1)82 ((381 + (-381)) .\

+(-lr2 ((281 + (-281 + (481 + (-481) -1,

and is equal to

I
(.\-3)(.\ -1)

(.\ + 2)(.\ -1)
(.\2 _ 5)

.\ (.\ - (2 «(81 + (-82) + 1))

for SI = S2 = 0,

for SI =1= 0, S2 = 0,

for SI =0,S2 = 1,

for SI =1= 0, S2 = 1.
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By using Theorem 2, we have

The characteristic polynomials of platonic graphs and the number of
spanning trees of them are given in the following table.

~(G; A) r(G)
T (x - 3)(x + 1)3 16

Q (x - 3)(x -1)3(x + 1)3(x + 3) 384

0 (A - 4)A3(A + 2)2 384
V (A - 3)(A2 - 5)3(A _1)5A4(A + 2)4 5,184,000
I (A - 5)(A + 1)5(A2 - 5)3 5,184,000

As the final applications of our results, we calculate the characteristic
polynimial of the generalized Petersen graph P(n, k), which consists of
an outer n~cycle, n spokes incident to the vertices of this n-cycle, and an
inner n-cycle attached by joining its vertices to every k-th spoke. Let p
be a generator of Zn and let 4>(n, k) be the Zn-voltage assignment of the
dumbbell graph M which assigns p on the left loop with counterclockwise
direction, pk on the right loop with counterclockwise direction, and the
identity on the the directed edge whose initial vertex is 1 and terminal
vertex is 2. Then, M x t;(n,k) Zn is isomorphic to P(n, k). This gives that
every generalized Petersen graphs are a regular covering of the dumbbell
graph. By Theorem 4,

where ( = exp( 2: i). This gives the following theorem.
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n-1 ( (2h1r 2kh1r )
~ (P(n, k); A) = (A - 3)(A -I)!! A2

- 2 cos(-;;-) + cos(-n-) A

2h1r 2kh1r )+4cos(-) cos(--) -1 .
n n

Theorem 5 gives that (P(5, 2); A) = (A + 2)4(A -1)5(A - 3) because
( + (2 + (3 + (4 = -1 for n = 5.

4. Further remarks

Mohar {ID] showed that every PL n-manifold M can be represented as
a branched covering of sn which is corresponded to the graph H ncon­
sisting of two vertices and n + 1 parallel edges between them, and the
simplicial scheme hn which sends directed edges of Hn to its inverse. He
also showed that the isomorphism classes of d-fold branched coverings of
sn = K(Hn , hn ) and the isomorphism classes of d-fold coverings of Hn
are one - to - one correspondence with the conjugacy classes of homo­
morphisms IT 1(Hn , *) -+ Sd. Kwak and Lee[9] showed that the number
of conjugacy classes of homomorphisms IT 1( G, *) -+ Sd is

L (£11212£21 ... d1d £d1)!J(G)-1

11 +212+···d1d=d

where f3(G) is the betti number of G. It is clear that f3(Hn ) = n. Thus
the number of P L n-manifold which are d-fold branched covering of
sn =K(Hn , hn ) up to covering isomorphism is bounded by the number
of d-fold coverings of H n up to covering isomorphism and is equal to

L (£11212£21 ... d1d £dlr-
1

.
11 +212+···d1d=d

But, we can not answer the following question.

QUESTION. Are there some relationships between the spectral struc­
tures of the coverings of H n and the structures of corresponding pseu­
docomplexes (crystallizations)?
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