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ESTIMATES ON MEAN ENTROPY FOR QUASI-FREE

STATES ON CAR AND CCR ALGEBRAS

BUM SOO LEE, YONG MOON PARK AND HYUN HYE SHIN

1. Introduction

The notion of entropy first arose in thermodynamics as a measure of
the heat absorbed, or emitted, when extremal work is done on a sys­
tem. In the subsequent development of classical statistical mechanics
this quantity was related to the order, or disorder, of the microscopic
particles which constitute the system. The equilibrium states in sta­
tistical mechanics have been characterized by a principle of maximum
mean entropy at fixed energy[l]. The concept of (mean) entropy was
then abstracted from statistical mechanics to dynamical systems via the
work of Kolmogorov and Sinai[4,8] and become a key notion in ergodic
theory[2].

A quantum or non-commutative analogue of the Kolmogorov - Sinai
dynamical entropy was required for both to provide an important math­
ematical concept for quantum dynamical systems and to be applicable in
quantum statistical mechanics. There have been several attempts to gen­
eralize the classical theory to non-commutative case. Recently Connes,
Narenhofer and Thirring was able to extend the KS dynamical entropy
to quantum dynamical systems[5] and their results for AF-algebras have
been extended to non-AF algebras[7]. It has also been established that in
many situation the dynamical entropy for space translations in quantum
spin systems turn out to be the mean entropy[5,6,9].

In this paper we estimate the mean entropy for quasi-free states on al­
gebras of canonical commutation relations (CCR) and of canonical anti­
commutation relations (CAR) over L2(RV

), and derive exact formulae
for the entropies. Our ultimate goal will be to show that the dynamical
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entropy for space translation, and mean entropy for the systems are co­
incide. We leave it to further studies. The CAR and CCR algebras, we
are dealing with arise naturally in quantum particle systems and so the
estimate of the mean entropy itself would be meaningful.

The contents of the paper are as follows: In Section 2 we briefly
review the notion of quasi-free states on CAR and CCR algebras and
then state our main result. In Section 3, we investigate local entropies
of the systems in details. We establish our main result in Section 4.

2. Quasi-free States on CAR and CCR Algebras and Main
Result

In this section we briefly review the notion of quasi-free states on CAR
and CCR algebras, and then state our main result. For the detailed
descriptions on CAR and CCR algebras, we refer the reader to Ref.[l].

Let us first describe quasi-free states on the algebra of canonical com­
mutation relations ( CCR algebra ) briefly. For any bounded region
A C RV, let AA denote the C*-algebra generated by non-zero element
W(f), f E L2(A,d'tl:), satisfying

(2.1)

(2.2)

W( - J) = W(f)*

W(f)W(g) = exp(-ilm(f,g»W(f +g)

and let A be the quasi-local algebra defined by the norm closure of
UACR" AA. Let w be a regular state on A. Let (1-£w,1rw(A),nw) be
the canonical representation of A with respect to the state w. For each
f E L2(RV) denote the infinitesimal generator of the unitary group t 1--+

1r",(W(tJ) by fJ!w(f). The annihilation and creation operators for each
f E L2(RV) given by

are densely defined, closed, a(J)* = a*(J) and satisfy the following
canonical commutation relation

(2.4) a(f)a*(g) - a*(g)a(J) = (f,g)l
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for any f, 9 E L2(RV). For any positive A E £(L2(RV)) the quasi-free
state WA on the CCR algebra over L2(RV) is defined by

(2.5)

1
WA(W(f)) = exp{ -2"WA(<l)",(f)2)}

1
WA(<l)",(f)2) = 2"wA(a(f)a*(f) + a*(f)a(f))

1
= 2" (J, (1 + 2A)f)

for any f E L2(RV). The relation (2.5) implies that

(2.6) WA(a*(f)a(g)) = (g, At)

for any f, 9 E L2(RV) and any higher order truncated functional equal
to zero.

The algebra of canonical anti-commutation relations (CAR algebra)
over L2(RII) is the C*-algebra generated by the identity 1 and the ele­
ments a(f), f E L 2(RII), satisfying the following canonical anti-commu­
tation relations

(2.7) a(f)a(g)* + a(g)*a(f) = (f, g)l

for any f, 9 E L2(RV). For any positive A E £(L2(RV)) the quasi-free
state W A on the CCR algebra is defined by

WA(a*(f)a(g)) = (g, At)

for any f, 9 E L 2(RV), and any higher order truncated functionals equal
to zero[1,10].

We now describe our result. Let K : RV -+ R be a (integrable)
function and let K be its unconventional Fourier transform:

(2.8) K(Ie) = JK(x)exp(-ilex)d'X

where lex = E:=l leiXi. Let A be the operator on L2(RV) given by
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(2.9) (AJ)(x) ~ JK(x - y)j(y)d'fj

Then the quasi-free state WA is translational invariant. Throughout the
paper we assume that the following conditions hold:

ASSUMPTION A. The Fourier transform K of K satisfies the following
conditions:

(a) For the CAR algebra, 0 ~ K(k) ~ 1, and for CCR algebra there
exist a positive constant M such that 0:5 K(k) ~ M.

(b) There exists a positive constant a(< 1) and M' such that

"
IK(k)1 ~ M' II(1 + Ikil)-(!+a).

i=l

~

(c) K be continuous on R".

REMARKS. (1) Assumption A(a) implies that 0 ~ A:5 1 for the CAR
algebra and 0 ~ A ~ M1 for the CCR algebra. Assumption A(c) can be
relaxed in some way. However for technical convenience we stick to the
condition (c).

(2) The states for ideal Fermi and Bose gases at inverse temperature
fJ = liT with activity z = e-P are the quasi-free state corresponding to

(2.10)

and

K(k) = exp(-P - Jl)
1 + exp(-k2 - Jl)

(CAR)

(2.11) K(k)= exp(-k
2

-Jl) , Jl>O,
1 - exp( -k2 - Jl)

(CCR)

respectively. Obviously these satisfy the condition in Assumption A.
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THEOREM 2.1. Let A be the operator on L2(R") defined by (2.8) ­
(2.9). Let S(WA) be the mean entropy for the quasi-free statewA. Under
Assumption A the following results hold :

(a) For the CAR algebra one has

S(WA) = - (2:)" J{K(k) logK(k) + (1 - K(k)) log(l - K(k))}d'k

(b) For the CCR one has

S(WA) = (2:)i J{-K(k)logK(k) + (1 + K(k)) 10g(1 +K(k»)}d'k

REMARK. The exact definition of the mean entropy will be given in
Section 3.

3. Some Properties of Local Entropies

For any bounded region A c R"let PA denote the projection operator
from L2(R") to L2(A), and let

(3.1)

For a notational simplification we suppress WA in the notation, i.e.,
H = HWJA , n = nWJA , etc. Let HA be the subspace of H spanned by
lI"(AA)n, and denotes the trace over HA by Tr1f./I.. From Assumption
A(b) it follows that

Tr1f./I.(AA) = (211")-"IAIJK(k)d'k < 00

and so the state WA is locally normal [1,10}. Let PA be the density
operator corresponding to WA = wAIA/I.. We then have that for !, g E
L2(A)

(3.2)

WA(a*(f)a(g)) = Tr1f./I.(PAa*(f)a(g))

=(g,AAf)



288 Bum 800 Lee, Yong Moon Park and Hyun Hye Shin

The local entropy for the state W A is given by

(3.3)

and the mean entropy is defined by

(3.4) S(WA) = 1im SIAAI'
A1R"

The above limit exists by the subadditivity of SA[l,lO].

PROPOSITION 3.1. Let SA be the local entropy defined by (3.3) for
each bounded region A C RI!. One has that

(CAR)

and

(CCR)

for any A C RI!. The rigbt hand sides of tbe above expressions are finite
for any bounded region A in RI!.

Proof. We first consider the local entropy of the CCR algebra. Since
WAA is a quasi-free state on 1t"(AA), there exists a trace class positive
operator B on L2(A)

(3.5) PA = r(B)/Tr(r(B))

where r(B) is the second quantization of B[l]. We note that

(3.6) r(B)a*(f) = a*(Bj)r(B).
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Thus it follows from (3.2), (3.5) and (3.6) that for any I,g E L2(A)

WA(a*(f)a(g» = Tr(r(B)a*(f)a(g))/Tr(r(B))

= Tr(a(g )a*(B f)r(B» /Tr(r( B»

=(g, Bf) +Tr(r(B)a*(Bf)a(g»/Tr(r(B»

=(g, Bf) +wA(a*(Bf)a(g»

Choosing 1 = (1 - B)-lg, we have that

wA{a*(g)a(g») = (g, 1~B g)·

From (3.2) and the above result we conclude that AA = B(l- B)-1 and
so

(3.7) B = AA
l+AA

Let Pd be the eigenvalues of B counting multiplicities. Then it can be
easy to show that [lJ

<Xl 00

Tr1t" (r(B» = L L (A::1
.,. A~k)

k=l ml ,'" ,mk =0:
{nl,'" ,nk}CN

(3.8)

(3.9)

and

j

= exp{-Trp(A)(log(l- B»)}

00<Xl

Tr1i,,(r(B)logr(B» = L L (A::1
• "A~k)log(A::I "'A:k

k
)

k=1 ml,'" ,mk=O:
{nl,···,nk}cN

00 <Xl

= L rII(1- Aj)-I] ( L Ai log Ai)
i=1 j;f.i m=O

00

= L [II(1- Aj)-I](logAi)Ai(l- Ai)-2
i=1 j;f.i
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Therefore from (3.8) it follows that

1 00 .Ai
- Tr(f(B)) Tr(f(B) log f(B» = - t; 1 _ .Ai 10g.Ai

B
= -Trp(A)(I _ B 10gB)

From (3.3), (3.9) and (3.10) we obtain that

SA = -TrL(h) (1 ~B 10g B) - Trp(A) 10g(I- B)

= -Tr(AA log AA) + Tr«I + AA) 10g(I +AA»

Here we have used (3.7) to derived the second equality. Thus we have
derive the expression for the CCR algebra in Proposition 3.1.

Next let us consider the CAR algebra. The equality in the Proposition
has been essentially derived in Ref.[lO]. For the reader's convenience we
sketch the basic idea. Using CAR relations in (2.7) and the method to
obtain (3.7) we conclude that there is a positive operator D on L(A)
such that

PA = f(D)jTr(f(D»

D= AA
I-AA

Let hi} be the eigenvalues of AA counting multiplicities. It can be show
that [10]

where PO,i and PI,i are projection operators in two dimensional space
such that PO,i + PI,i = 1. The expression for the CCR algebra follows
from the above representation. For the details we refer to Ref.[ID}.

Finally we show that the finiteness of SA' We will use the follow­
ing inequality [1]. For any trace class positive operator A and B the
inequality

(3.12) -Tr(AlogA - A log B) ~ Tr(B - A)



holds.
We first show that

(3.13)
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Let A - (-L/2, L/2)V be the rectangular box, and let D.A,P be the
Laplacian on A with periodic boundary condition. Choose positive con­
stants a' and a such that 0 < a' < a < 1, where a satisfies Assumption
A(b). Denote

DA == exp{-(-~A,P)0" /2}

Then by (3.12) we have that

-Tr(AA log AA) = -Tr(AA log AA - AA 10gDA) - Tr(AA 10gDA)

~ Tr(DA - AA) + Tr(( -D.A,P )0" /2AA)

Since DA and AA are trace class operators, Tr(DA - AA) < 00. Let

v

(3.14) In(x) == IT{L-1
/

2 exp(i2nj7rx/L)}, nE ZV
;:;;;1

Then {In} form a basis for L2(A). Denote that

(3.15) ~ () ITv { 2 . (L( 2n;7l")/( 2n;7l" )}
XA,n k = ;:;;;1 J27l"L sm 2" kj - -r;- kj - -r;-)

A direct computation yields that

(3.16) Tr(( -~A,P)0" /2AA) = :E (21~I7l"t' !(XA,n(k))2K(k)d'k
nEZ"

where Inl 2 = n~ + ... + n;. Using Assumption A(b) and the fact that

v

IXA,n(k)/ ~ c IIU + Ikj -2nj1r/LI)-1
j:;;;1
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it is easy to check that

(3.17) f XA,n(k)2K(k)d ll k ~ MfI(1+ 12nj1r/LI)-(l+a)

j=1

(3.18)

for some 0 < M. Substituting the above bound to (3.16) we prove that

Tr«-6A,Pyr'/2AA) < 00

This proved (3.13) completely
Next we note that

Tr«1 + AA) log(l + AA)) ~ Tr(AA + Ai)

~ (1 + /IAAIDTr(AA)

<00

and

(3.19)
-Tr(l - AA) 10g(1 - AA)) ~ Tr(AA)

<00

The finiteness of SA follows from the first part of Proposition, (3.13) and
(3.17)-(3.18). This completes the proof.

4. Estimate on Mean Entropy

In this section we prove Theorem 2.1. We first consider the mean
entropy of the quasi-free state W A on the CCR algebra. As in Section 3,
let A = (-L/2, L/2)1I be a box. We introduce an operator EA on L2(A)
by

(4.1)

where for each n E ZII, Pn be the project operator onto one dimensional
subspace spanned by the vector defined in (3.14). Put

(4.2) SA == -Tr(EA log EA) + Tr«(l +EA )log(l + EA)).

We then have the following result:
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PROPOSITION 4.1. Under tbe Assumption A, tbe equality

I· 1 S I' 1 S~
lm -IAI A = lm -IAI A\10.1 .....00 110.1 .....00

293

bolds for tbr CCR algebra. An analogous result bolds for CAR algebra.

Proof of Theorem 2.1. Notice that

-Tr(EAlogEA) = - L K(2n1rjL)log(K(2nrrjL».
nEZv

REMARK. Since -KlogK $ C(6)K I - 6 for any 6 > O. Assumption
A(b) implies that -KlogK is integrable. Thus it follows that

as L --t 00. The second term in (4.2) gives the corresponding second
term in the theorem. The method similar to that used in the above can
be applied to the proof of the theorem for CAR. This proved Theorem
2.1 completely.

The rest of this paper is devoted to the proof of the Proposition 4.1.
For each L, let a(L) be a positive number satisfying

(4.3) lim a(L) = O.
£ .....00

We will specify the number a(L) later. As in Section 3 we define an
operator DA on L(A) by

(4.4) ~ {1 2nrr 1°/DA == ,L., exp - L }Pn

nEZV

where la\ is the Euclidian norm of a E R", and 0 < a' < a < 1. For a
notational simplification, denote

(4.5)
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We then have that

-Tr(AA log AA) = -Tr(AA log AA - AA log FA)

- Tr«AA - FA) log FA)

(4.6) - (Tr(FAlogFA)-Tr(EAlogEA»)

- Tr(EA log EA)

= lA + IIA + illA + IVA

We assert that

(4.7)

as L -+ 00. Under the assertion we conclude that

as L -+ 00.

Let us prove our assertion in (4.7). Using (3.12) we obtain that

Ihl $ ITr(FA - AA)I

= ITr(EA + a(L)DA - AA)I

Since IAI-1ITr(EA - AA)I -+ 0 and IAI-1a(L)Tr(DA -+ 0 as L -+ 00,

IAI-1I!AI-+ 0 as L -+ 00. Similaly it is easy to show that IAI-1ImAI-+ 0
as L -+ 00.

Next we consider IlA. Since

IUn,log(EA +a(L)DA)!n)/ $ IUn, log(a(L)DA)!n)I

if (In, (EA+a(L)DA)!n) $ 1, and I(In,log(EA+a(L)DA)!n) Iis bounded
uniformly in A if Un, (EA + a(L)DA)!n) ~ 1 by Assumption A(a), we
have that

(4.9) IAI-1IIIAI $IAI-1 L l(In,(AA-EA)!n)I[-loga(L)+12~1rla]
nEZ"
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Consider the quantity defined by

295

(4.10)

where XA,n has been defined in (3.15). Change of variable yield that

(4.11)

KL,n == JIXA,n(k)1
2
K(k)d'k

= J(0 11"~ sin2(Lkj /2)/kJ)K(k + (2n1l"/L))d'k
)=1

= 11"-11 J(JI sin2(k j )/k;)K«2k/L) + (2n1l"/L))d'k
)=1

Note that 11"-1 J(sin2 k)k-2dk = 1. For given k' E R/I, take L -+ 00

and InI -+ 00 such that lime2n 11" / L) = k'. Then by the Dominated
Convergence Theorem we obtain that

(4.12)

as L -+ 00 and 1nl -+ 00. Here we have used Assumption A(b) and (c).
Define

if k' [2n1l" 2( n + 1)11")

EL' L

if k' [2n1l" 2(n+1)1I")
EL' L

Then

beL) = (2~)1I JIKil)(k') - Ki,2)(k')ld'k'

If 0 < a' < ex < 1, one may use Assumption A(b), (3.17), the Dominated
Convergence Theorem and (4.12) to conclude that

(4.13) b(L)~O as L-+oo
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Similarly it can be check that ( the case in which 0:' = 0 in (4.12»

(4.14) eeL) = IAI-1 L IUn, (AA - EA)fn)1
nEZ~

---+ 0

as L -+ 00. We choose a(L) such that

(4.15) c(L)(-loga(L)) -+ 0

Then it follow from (4.9), (4.10), (4.13), (4.14) and (4.15) that

IAI-1IIIAI-+ 0

as L -+ 00. This proved the assertion in (4.7).
It is clear that a straight forward application of the method used in

the proof of (4.8) show that

as L -+ 00. We leave the detailed proof of the above result to the reader.
This completes the proof of the Proposition.
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