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A G/M/1 VACATION MODEL

WITH EXHAUSTIVE SERVER

BONG DAE CHOI AND KWANG Kvu PARK

1. Introduction

In recent years there have been significant contributions to the the­
ory of queue with server vacations. For complete reference on vacation
model, see Doshi [6]. Vacation models have been widely used to model
many problems in computer, communication and production systems.
Vacation models also are closely related to cyclic queues, priority queues
and retrial queues. Different vacation models are distinguished by their
scheduling disciplines, i.e., by the rules which determine when service
stops and a vacation begins. In the exhaustive service discipline, the
server takes a vacation if the system is empty. In a limited service disci­
pline, the server takes a vacation when the system is empty or when K
customers have been served during the current visit, whichever occurs
first. In the Bernoulli schedule discipline, the server begins a vacation
either if the system is empty or if, at a service completion, the system
is not empty, then sevice is resumed with fixed probability p and the
server takes vacation with probability 1 - p. M / G/1 vacation model un­
der the exhaustive service discipline has been investigated by Levy and
Yechialli [13], Heyman [9], Lee [12], Doshi [5,6], Fuhrmann and Cooper
[7]. M/G/l vacation model under the limited service discipline has been
studied by Cramer [3] and others. M/G/l vacation model under the
Bernoulli schedule discipline has been studied by Keilson and Servi [10],
Ramaswamy and Servi [16].

Recently J.K. Daniel and Krishnamoorthy [4] investigated G/M/l
vacation model with a limited service by the matrix-geometric approach.
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In this paper we consider a GIMl1 queue with a exponential vaca­
tion time and an exhaustive service. Even under the exhaustive service
disciplines there are two different vacation models which are called the
multiple vacation model and the single vacation model. In the multiple
vacation model the server takes a vaction every time the system becomes
empty and whenever the server returns from a vacation to find no waiting
customers. In the single vacation model the server takes single vacation
only when the system becomes idle at the end of busy period. H, on
return from a vacation, the system is empty, then the server waits his
return to serve customers.

We analyse the multiple vacation model for GIM /1 queue by imbed­
ded Markov chain approach in the section 2. Queue length proba­
bilities at arrival time points are derived explicitly by solving a non­
homogeneous difference equation. Queue length probabilities at arbi­
trary time points are obtained in the section 3. The formula for the
Laplace transform of waiting time shows that the stochastic decomposi­
tion property holds. The single vacation model for the GIM 11 queue is
analysed briefly in the section 5.

2. Queue length probabilities at arrival points

First let us describe the multiple vacation model in detail. When
the server finishes serving a customer and finds the system empty, he
goes away for a random length of time called vacation. The vacation
time is utilized for secondary customers or maintenence jobs. H the
server returns from the vacation and finds at least one customer waiting,
he works until the system empties, then he takes another vacation. H
the server returns from the vacation and finds no customer waiting, he
immediately takes another vacation, and continues in this manner until
he finds at least one customer waiting, when he returns from vacation.

We consider a GIMl1 queueing system with the server vacations in
which customer arrives according to a renewal process with interarrival
time distribution A(t), service times are distributed exponentially with
mean ; and vacation times are distributed exponentially with mean ~.

Let A*(s) = Jooo e-SXdA(x) be the Laplace transform of A(t) and t the
mean of A(t).
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Observing the vacation system immediately prior to an arrival time
point we obtain an imbedded Markov chain defined on the state space
S = {(i,j)li = O,I,j = 0,1,2, ... } - {(1,0)}. i = °indicates that the
server is on vacation, and i = 1 indicates the availability of the server
at the service facility. The index j indicates the munber of customers
immediately prior to an arrival. Note that state (1,0) is not appeared
in the multiple vacation model, because it is impossible that the server
is available and the system is empty at the moment of an arrival. The
transition probability matrix P associated with the imbedded Markov
chain is given by

(0,0) (0,1) (1,1) (0,2) (1,2) (0,3) (1,3)

(0,0) A*(a) ao ° ° ° °(0,1) ° al A*(a) ao ° °(1,1) ° bl ° bo ° °(0,2) ° a2 ° al A*(a) ao
P = (1,2) ° b2 ° bl ° bo

(0,3) ° a3 ° a2 ° al
(1,3) ° b3 ° b2 ° bl

The element A*(a) is the probability that the vacation is continued in
an interarrival time,

A*(a) = 100 e-OX dA(x).

The element a k is the probabili ty that the vacation is over and k cus­
tomers are served during an interarrival time. If we assume that the
interarrival time is x and it requires x - t sec. until the vacation is
terminated, then ak is given by

100 lx -p.t( t)k
- -o(x-t) e J.l d dA( ) k _ak - 0 0 ae k! t x, - 0,1,2, ...

The element bk is the probability that k customers are served during an
interarrival time,
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The elements in the first column are the numbers which make each row
probability distribution.

It is well known (see Prabhu [14]) that the imbedded Markov chain
is ergodic if and only if p = ~ < 1. In the rest of this paper we always
assume that p < 1.

In steady state let N be the number of customers present immediately
prior to arrival time points and i the status of the server. Define

1rn = P(i = O,N = n),

W n = P( i = 1, N = n),

Le. 1rn[resp. wn ] is the steady-state probability that an arrival sees n
customers in the system and the server is on vacation [resp. available].
Then f7rn } and {wn } satisfy the stationary equation;

and
00 00

L 1l"i + LWi = 1.
i=O i=l

Now the equation (1) may be written as

(2a) 1l"n = A*(a)1rn _l,n = 1,2,··· ;

00

(2b) Wn = LbkWn+k-l + Lak1rn+k-b n = 1,2,···
k=O

From (2a) we obtain

(3a)
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Note that

00 100l x -p.t( t)k=L 7ro(A*(a))n+k-l ae-o(x-t)e kr dtdA(x)
10=0 0 0

= 7roA*(a)n-l 100 ae-OX l x
e-(p.-o-p.A*(o»tdtdA(x)

{

7r A*(a)n-laA*(ol-A*(p.-p.A*(o» if H - a - HA*(a) -J. 0
_ 0 p-o-p.A*(o) ,,- ,- T'

7roA*(a)n-l a Jooo xe-ax dA(x), if J.L - a -/lA*(a) = 0 .

271

We have two cases depending on whether fl - a - flA *(a) is zero or not.
But we think of A*(a)-A*(p-pA*(a» as function of 11 thenp.-a-pA*(a) '-'

when J.L-a-J.LA*(a) = O. Thus the rsults for the case J.L-a-J.LA*(a) = 0
follows from these for the case fl - a - flA * (a) f- 0 by using L'Hospital
rule. So only the case J.L - a - J.LA*(a) f- 0 is treated in detail.

Now we have from (2b) for n 2: 1

(3b)

Next we employ the method of the shift operator to obtain solution
{wn} of (3b). Letting DWn = Wn+b we find that (3b) can be written as

(4) (D - ~bDI) = A*( )n-l A*(a)-A*(/l-/lA*(a))
L 1 Wn-l 7ro a a A*()'
1=0 fl- a - J.L a

So the limiting probabilities {wn } are the solution of the non-homogeneous
difference equation (4) subject to the boundary condition (3b) for n = 1.
First we need to find the general solution of (4) which is the sum of the
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general solution to the homogeneous equation (right hand side of (4)
replaced by zero) and a particular solution to (4). It is well known
(Gross and Harris [8, p.307]) that the general solution of homogeneous
equation (D - L:~o b,D')wn_I = 0 is given by W n = c-yn, where, is
the unique solution in the unit disc of the equation z - L:~o b,z' = 0,
o < , < 1, whose existence and uniqueness is guarented by the traffic
condition p = *< 1. Usually it is not easy to find a particular solution
of the difference equation. One particular solution of (4) will be given
of the form

(5)
ft-I n A*()n

W n = d'" ,n-l-'A*(a)' = d' - a,
L- , -A*(a)
1=0

where d is a constant to be determined by substituting (5) into (3b). In
fact, guess to this solution (5) comes from the operational calculus.

We calculate the left hand side of (3b) to find out the constant d.

00

W n - L W n+'-1 b,
1=0,n _A*(a)n 00 ,n+l-l _ A*(a)n+'-1

= d - d'" b,
, - A*(a) ~ , - A*(a)

= din - A*(a)n _ d,n-l ~ ,'b, + dA*(a)n-l ~ A*(a)'bl
, - A*(a) , - A*(a)~ , - A*(a) ~

=d,n-A*(a)n din +dA*(a)n-1 A*(JL-JLA*(a»
, - A*(a) , - A*(a) , - A*(a)

= dA*(/L - /LA*(a» - A*(a) A*(a)n-l.
, - A*(a)

Thus we obtain

{

A*(a)--y
"-o-,,A* (0) 11"0a

d-- [ze'"'" dA(z)
1-11 I:' ze-"" dA(z) 1I"0a

if JL - a - JLA*(a) :f: 0,

if JL - a - /LA*(a) =O.
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Hence the general solution of (4) is given by
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n-l

(7) W n = Cfn +dL 'Yn-1-IA*(a)', n 2:: l.
1=0

The constant c is determined so that (7) satisfies the boundary con­
dition (3b) with n = 1. By substituting (7) into (3b) with n = 1, the
left hand side of (3b) is equal to

00

Wl - Lw,b,
1=0

00 1 A*(a)'
= Cf + d - L(CfI + d'Y - )b,

1=1 l' - A*(a)

= Cf + d - Cf + cA*(It) - d ( l' _ A*(1t -ItA*(a»)
l' - A*(a) It - A*(a)

d
= cA*(It) + A ( ) (A*(1t -ItA*(a» - A*(a»

1'- *0'

_ A*() A*(a)-A*(It-ItA*(a»
- c It + A () 71"00'It-a-It * 0'

Thus we have from (3b) with n = 1 that cA*(It) = 0, and hence c = O.
It remains to find out 71"0. From 2::'=o11"n + 2:::1 W n = 1, we obtain
with some calculation that

{

(ll-a-IlA·(a»(I--y) if /l - a - /lA*(a) ..t 0',
(8) 11"0 = Il- a --Yll ,.. ,.. I

1 - l' if It - 0' - itA*(a) = O.

We need the following remark to make sure that constant d given by (6)
and the probability 11"0 are positive.

00

Note that L b,z' = A*(1t - Itz) and so l' is the solution of z -
1=0

A*(p - pz) = O. If p - a - pA*(a) = 0 then 0' = It - /lA*(a) and
so A*(a) = A*(p - ItA*(a». By uniqueness of the solution, we have
A*(a) = 1'. If p- a - pA*(a) > 0 then A*(a) > A*(p- pA*(a», and
so l' < A*(a), and so 0 < It - 0' - pA*(a) < It - 0' -Itl' This confirms
that d and 11"0 are positive.

Thus we have the following:
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THEOREM 1. Assume that ~ < 1 and let 'Y be the unique solution of
I'

Z - A*(JL - JLz) = O. Let 'lrn[resp. wnl be the steady-state probability
that an arrival sees n customers in the system and the server is on the
vacation [resp. available]. Then

n-I

W n = dL:: 'Yn-1-kA*(a)k,
k=O

where 'lro is given by (8) and

{

A*(a)-l(l - )a
p-a--rp 'Y

d-- It xe"'''' dA(x)
1-1' fooo xe ,.'" dA(x)

if JL - a - JLA*(a) =1= 0,

ifp- a - JLA*(a) = o.

IT a ~ 00, then our vacation model is reduced to the ordinary G/ M /1
queue without vacation in the sense that queue size distribution for
G/M/1 queue with vacation approaches to that for G/M/1 queue with­
out vacation. The following corollary shows the above fact holds.

COROLLARY 2. If a ~ 00 in the above vacation model, then

'lrO ~ 1 - 'Y,

'lrn ~ 0, n ~ 1,

W n ~ (1 - 'Yhn
, n ~ 1.

Proof. For sufficient large a, JL - a - JLA*(a) =1= O. Hence

lim
- li (p-a-pA*(a))(l-'Y)_l

'lro- rn - -'Y,
a .....oo a .....oo p - a - 'YJL

lim d = lirn A*(a) ~ 'Ye )1I"oa = (1- 'Yh.
a ....oo a .....oo JL - a - p * a

Thus the required result is obtained.



A G/ M/I vacation model with exhaustive server

3. Queue length probabilities at arbitrary time points
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Let U(t) be the distribution of the equilibrium backward recurrence
time of an interarnval time; that is,

U(t) = AI t

(l - A(x» dx.

Let Pk [resp. qk] be the equibrium probability that at arbitrary time
point there are k customers in the system and the server is on vacation
[resp. available]. Then these probabilities are given by (Gross and Harris
[8, p.152])

Pn( or qn )

~ to [".. 1.00

P {appropriate changes in t to bring state from i to n} dU(t)]

+t [Wi 100 P{appropriate changes in t to bring state from i to n} dUCt)] .
1=0 0

In the process of calculating Pn and qn, we often use the formula

f oo

e- 9X(1_A(x»dx= l-A*(9).
io 9

Let us find out Pn(n ~ 1).

Pn = 7rn-l 100 P(the vacation time> t)dU(t)

= A7rn -l 100 e-at(1- A(t»dt

= A7rn_l1- A*(a)
a

_ \ A*( )n-1 1 - A*(a)
- A7ro a .

a
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Next we calculate qn (n ~ 1).

00 100qn = L Wn+k-l P{k departures in [0, t]} dUet)
k=O 0

00 100+ L 7rn +k-1 P{vacation is over and k departures in [0, t]} dUet)
k=O 0

00 fOO e-p.t(ltt)k
= AL Wn+k-l 10 k! (1 - A(t» dt

k=O 0

00 100 it e-p.(t-S)(It(t-s»k
+ L 7rn +k-1 ae-aB k! ds(1 - A(t» dt

k=O 0 0

_ 00 'Yn+k - l - A*(a)n+k-l 100 e-p.t(ltt)k
-AdL -A*( ) kl (I-A(t»dt

k=O l' a 0 •

00 100I t -p.(t-s)( (t »k+ A7roLA*(a)n+k-l aease ~ -x ds(I-A(t»dt
k=O 0 0 k.

= Ad 1 {'Yn- 1 foo e-(p.-Wy)t(1- A(t» dt
l' - A*(a) 10

_A*(a)n-l 100 e-(p.-p.A·(a»t(1_ A(t»dt}

1
00 at - -(p.-p.A·(a»t

+ A7roA*(a)n-l ae ae A () (1 - A(t» dt
o It-a-It *a

+ Ad {'Yn-11- A*(It-It'Y) _ A*(a)n-l 1 - A*(It-ItA*(a»}
l' - A*(a) 1t-1t'Y 1t-ItA*(a)

+ A1roA*(a)n-1 a {1- A*(a) _ 1- A*(1t -ItA*(a»}.
1t-ItA*(a) a 1t-ItA*(a)

After substituting d and 7r0 and lengthy calculation, we obtain

qn = A(1 - 'Y)a ('Y
n
-

l
_ 1- A*(a) A*(a)n-l) .

It - a - 1t'Y It a
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Returning now to po, we have
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(9)

Po = t. {W. J.~ P {at least k + 1 departures in [O,IJ) dU(I)}

+~ { ... J.~ P{vacation is over and at least k + 1 departure} dU(I)}

00 I. A*( )k 100l t
-",IJ( )t= A"" "Y - a p.e p.x ds(l- A(t»dt

(:; "Y - A*(a) 0 0 k!

00 100 lt It-x -",IJ( )1.+ A1I"0 L: A*(a)k ae- IJIJ p.e ktX
dx ds(l - A(t»dt.

1.=0 0 0 0

With tedious calculation, we obtain

a A
Po = (1- -)

a + "YP. - P. P.

+ (1 - "Y) {p. _ >.(p. _ a - p.A*(a» _ A}.
p. - a - "YP.

Thus we have the following

THEOREM 3. Let Pn[resp. qnJ be the equilibrium probability that at
arbitrary time point there are k customers in the system and the server
is on vacation [resp. busy period). Then

A(p. - a - p.A*(a)(l-i) 1 - A*(a)
Pn = ,

p. - a - "Yp. a

A(l-i)a ("Yn-1
1-A*(a)A*( )n-l)qn = -- - a,

p. - a - P.i P. a

Po is given by (9).

REMARK. If a --t 00, then qn --t *(1 - ihn-t, Po --t 1 - * and
Pn --t O(n ~ 1). We see that the limiting queue size probability for
vacation model as a --t 00 is the exact probability of number of customers
at random time points in G/ M /1 queue without vacation.
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4. Waiting time distribution

Let W be the waiting time of an arriving customer in the queue. Then
the Laplace transform of W can written as

00

= '2:E(e-8Wlarrival finds k customers and the server is on vacation)1l"k
k=O
00

+ '2: E(e-8W larrival finds k customers and the server is busY)wk
k=l

Simple calculation yields

The first factor on the right side of (10) is the Laplace transfrom
of the remaining vacation time. The second factor on the right side
of (10) is the Laplace transfrom of waiting time in the usual G/M/l
queue without vacation. This confirms that the stochastic decomposition
property (Doshi [5]) holds for G/M/l vacation model, i.e., the steady­
state waiting time is the sum of two independent random variables; one
of these is the waiting time in the same queue without vacation, and the
other is the remaining vacation time.

5. G/M/l with a single vacation

We now describe the single vacation model. The server takes exactly
one vacation after the end of each busy peroid. If, on return from va­
cation, the server finds at least one customers waiting in queue, then
he starts service immediately and keeps busy until the system becomes
idle again and leaves for another vacation. If no customers have arrived
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during the vacation time, then the server waits for the next arrival as in
the usual G/M/1 queue.

In the sequel we use the same notation as for G/ M /1 with multiple va­
cation model. The state space is the set {(i,j)li = 0, 1,j = 0,1,2,3"" }.
The state stands for the same meaning as for multiple vacation model.
Here the state (1,0) corresponds to the event that a customer arrives
when the server is waiting for customer after a vaction.

The transition probability matrix P for the Markov chain obtained
by observing the system immediatedly prior to an arrival time pont is
given by

(0,0) (1,0) (0,1) (1,1) (0,2) (1,2) (0,3)
(0,0) Co A*(a) ao ° 0 0
(1,0) do 0 bo 0 0 0
(0,1) Cl 0 al A*(a) ao 0
(1,1) dl 0 bl 0 bo 0

P::: (0,2) C2 0 a2 0 al A*(a)
(1,2) d2 0 b2 0 hI 0
(0,3) Ca 0 aa ° a2 0

The ak, h are the same ones as in multiple vacation model. The
element A*(p,) is the probability that during an interarrival time there
is no service completion,

A*(p,) = 100e-pt dA(t).

The element Ck is the probability that k + 1 customers are served and
two vacations are over during an interarrival time,

100 lx (lx-t
-PB( )k )

Cl; = 0 0 0 p,e ktS
ds ae -ateat) dt dA(x).

The element dk is the probability that k + 1 customers are served and
one vacatin is over during an interarrival time,
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Let {1I"n} and {wn } have the same meaning as in multiple vacation
model. Then they satisfy the following:

(ll.a)

(11.b)

(ll.c)

(ll.d)

(ll.e)

00

Wo =L)1I"k + dkWk)
k=O

00 00

Wl =woA*(JL) + L ai1l"i + L biWi
i=O i=O

00 00

Wn =L bkWn+k-l + L ak1l"n+k-l (n ~ 2)
k=O k=O

1I"n = 1I"n_lA*(a) (n ~ 1)
00

1 =L(1I"k +Wk).
k=O

By the same way as in multiple vacation model, we have

(12.a)

(12.b)
A*( ) n-l-l

Wn = 011"0 a -, L ,n-k-lA*(a)k (n ~ 2).
JL-a-JLA*(a) k=O

Now it remains to determine Wo, Wl and 11"0. But we have three equations
(11.a), (11.b) and (ll.c) and three unknown numbers. So we can obtain
Wo, Wl and 11"0 as known parameters.
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