A DUALITY-LIKE OPERATION ON THE UNIPOTENT CHARACTERS OF A REDUCTIVE GROUP OVER A FINITE FIELD

IN-SOK LEE

1. Introduction

Let G be a connected reductive algebraic group defined over a finite field \mathbf{F}_q with the connected center and a Frobenius morphism F and let G^F be the finite subgroup of F-fixed elements in G. Considerable progress in the representation theory of G^F has been made by G. Lusztig. He has shown that the knowledge of irreducible unipotent characters (see Section 3) of G^F is of primary importance in understanding the character ring of G^F .

Lusztig's Jordan decomposition of irreducible characters ([7]) implies, in particular, that there is a one-to-one correspondence between the set of irreducible unipotent characters of G^F and that of the dual group $(G^*)^{F^*}$. Let us call this bijection the *Lusztig's correspondence* in this paper.

The purpose of this paper is to give a simple alternative description of the Lusztig's correspondence under the assumption that all the irreducible unipotent characters of G^F are uniform characters (see Corollary 3.5). We also introduce a *duality-like* operation on the irreducible unipotent characters which coincides with the Lusztig's correspondence and commutes with the duality operation of Curtis[3], Alvis[1] and Kawanaka[6] (see Theorem 2.3 and Proposition 3.4).

We use the standard notation in [4] and [2]. All the characters are complex characters. For a finite group H, let 1_H (or 1) denote the principal character of H. For class functions φ and ψ of H, we define the ordinary hermitian inner product (φ, ψ) by $\frac{1}{|H|} \sum_{h \in H} \varphi(h) \overline{\psi(h)}$.

Received July 2, 1991.

Supported in part by 1988 Korea Science and Engineering Foundation grant 883-0101-019-2.

262 In-Sok Lee

2. Preliminaries

One of the most important ideas in the representation theory of G^F is the concept of dual groups. This was first appeared in Deligne-Lusztig[4]. Here we use the notation in [2, Ch. 4]. Let (G, F) and (G^*, F^*) be in duality with respect to maximally split torus T_0 and T_0^* respectively (see [2, p. 114]). Then this duality gives rise to a bijection between the G^F -conjugacy classes of F-stable maximal tori of G and the $(G^*)^{F^*}$ conjugacy classes of F^* -stable maximal tori of G^* ([2, Proposition 4.3.4]). This bijection will be denoted by $T \leftrightarrow T^*$.

We denote by σ_G the \mathbf{F}_{g} -rank of G (see [4]) and by W(T) the Weyl group of G with respect to a maximal torus T of G. Let $\varepsilon_G = (-1)^{\sigma_G}$. The following lemma can be easily shown from the definitions.

LEMMA 2.1. If $T \leftrightarrow T^*$ then we have:

- (1) $\varepsilon_G \varepsilon_T = \varepsilon_{G^*} \varepsilon_{T^*}$
- (2) $|W(T)^F| = |W(T^*)^{F^*}|$ (3) $|G^F: T^F| = |G^{*F^*}: T^{*F^*}|$.

For a pair (T, θ) of an F-stable maximal torus T of G and a linear character θ of T^F , Deligne-Lusztig[4] defined a virtual character R_T^{θ} of G^F using the ℓ -adic cohomology groups. In their famous paper [4], Deligne-Lusztig also defined the notion of geometric conjugacy classes of the pairs (T,θ) . If χ is an irreducible character of G^F and $(\chi,R_T^\theta)\neq 0$ for some (T, θ) contained in a geometric conjugacy class κ then we say $\chi \in \kappa$. We will freely use the standard results on the Deligne-Lusztig characters R_T^{θ} and the geometric conjugacy classes given in [4].

An irreducible character of G^F is called a uniform character if it is a C-linear combination of Deligne-Lusztig characters. The proof of the following character formula is similar to that of [4, Lemma 10.6].

LEMMA 2.2. Let χ be an irreducible uniform character of G^F contained in a geometric conjugacy class κ . Then

$$\chi = \sum_{\substack{(T,\theta) \in \kappa \\ \text{mod } G^F}} \frac{(\chi,R_T^{\theta})}{(R_T^{\theta},R_T^{\theta})} R_T^{\theta}$$

where the sum extends over one representative (T, θ) in each G^F -orbit in κ .

We denote by $\chi \mapsto \chi^*$ the Curtis-Alvis-Kawanaka duality operation on the character ring of G^F .

THEOREM 2.3 ([3], [1] AND [6]). The map $\chi \mapsto \chi^*$ induces an isometry on the space of class functions of G^F which has order 2. Thus if χ and ξ are characters of G^F then $(\chi^*)^* = \chi$ and $(\chi, \xi) = (\chi^*, \xi^*)$.

Since we have

$$(R_T^{\theta})^* = \varepsilon_G \varepsilon_T R_T^{\theta}$$

by [5], we get:

COROLLARY 2.4. Let χ be as in Lemma 2.2. Then

$$\chi^* = \sum_{\substack{(T,\theta) \in \kappa \\ \text{mod } G^F}} \frac{\varepsilon_G \varepsilon_T(\chi, R_T^\theta)}{(R_T^\theta, R_T^\theta)} R_T^\theta$$

where the sum extends over one representative (T, θ) in each G^F -orbit in κ .

3. The Operation $\chi \mapsto \chi_{\mathbf{u}}$

Let (G,F) and (G^*,F^*) be as in the previous section. An irreducible character χ of G^F is called an irreducible unipotent character if $(\chi,R_T^1)\neq 0$ for some F-stable maximal torus T of G. Thus the irreducible unipotent characters form a single geometric conjugacy class. This geometric conjugacy class is consisting of (T,1) for F-stable maximal tori T, since (T,1) is geometrically conjugate to (T',θ') if and only if $\theta'=1$. Now Proposition 2.2 implies that if χ is an irreducible unipotent uniform character of G^F then

(*)
$$\chi = \sum_{\substack{T \text{mod } G^F}} \frac{(\chi, R_T^1)}{(R_T^1, R_T^1)} R_T^1$$

where the sum extends over G^F -conjugacy classes of F-stable maximal tori T.

264 In-Sok Lee

DEFINITION 3.1. Let χ be an irreducible unipotent character of G^F . Define a class function χ_u of $(G^*)^{F^*}$ by

$$\chi_{u} = \sum_{\substack{T^{\bullet} \\ \text{mod } (G^{\bullet})^{F^{\bullet}}}} \frac{\mu_{T^{\bullet}}^{\chi}}{|W(T^{*})^{F^{\bullet}}|} R_{T^{*}}^{1}$$

where $\mu_{T^*}^{\chi} = (\chi, R_T^1)$ if $T \leftrightarrow T^*$.

For example, we have $(1_G)_u = 1_{(G^*)}$ and $(St_G)_u = St_{(G^*)}$ where 1_G is the principal character of G^F and St_G is the Steinberg character of G^F .

It follows from [4, Theorem 6.8] that (R_T^1, R_T^1) is equal to $|W(T)^F|$, hence equal to $|W(T^*)^{F^*}|$ if $T \leftrightarrow T^*$ by Lemma 2.1. Let χ be an irreducible unipotent uniform character of G^F . Then (*) and [4, Theorem 6.8] imply

$$(\chi_u, \chi_u) = \sum_{\substack{T^* \\ \text{mod } (G^*)^{F^*}}} \frac{(\mu_{T^*}^{\chi})^2}{|W(T^*)^{F^*}|} = \sum_{\substack{T \\ \text{mod } G^F}} \frac{(\chi, R_T^1)^2}{|W(T)^F|} = (\chi, \chi) = 1.$$

Moreover, since

$$R_T^1(1) = \varepsilon_G \varepsilon_T |G^F: T^F|_{p'}$$

by [4, Theorem 7.1], Lemma 2.1 and (*) imply $\chi(1) = \chi_u(1)$. Thus χ_u is an irreducible unipotent uniform character of $(G^*)^{F^*}$.

Being inspired by the above argument, we make the following definition.

DEFINITION 3.2. We say G^F is unipotently uniform if all the irreducible unipotent characters of G^F are uniform characters.

Henceforth, we assume G^F is unipotently uniform. G^F is unipotently uniform if, for example, G^F is a split group of type A_{ℓ}^{ad} .

If χ and ξ are irreducible unipotent characters of G^F , then [4, Theorem 6.8], Lemma 2.1 and (*) imply $(\chi_u, \xi_u) = (\chi, \xi)$. Furthermore, if $\chi \neq \xi$ then $(\chi_u, \xi_u) = (\chi, \xi) = 0$. This shows $\chi \mapsto \chi_u$ is injective and the next theorem follows from the fact that the number of irreducible unipotent characters of G^F is the same as the number of irreducible unipotent characters of $(G^*)^{F^*}$.

THEOREM 3.3. Let G^F be unipotently uniform. Then the operation $\chi \mapsto \chi_u$ gives a bijection (in fact, an isometry) between the set of irreducible unipotent characters of G^F and the set of irreducible unipotent characters of $(G^*)^{F^*}$.

Note that we have also shown, incidentally, that if G^F is unipotently uniform then so is $(G^*)^{F^*}$.

It is clear that the dual of (G^*, F^*) is (G, F). The following facts can be now easily verified using Corollary 2.4.

PROPOSITION 3.4. Let G^F be unipotently uniform and χ be an irreducible unipotent character of G^F . Then we have:

- (1) $\chi(1) = \chi_u(1)$ and $(\chi, R_T^1) = (\chi_u, R_{T^*}^1)$ if $T \leftrightarrow T^*$
- $(2) (\chi_{\mathbf{u}})_{\mathbf{u}} = \chi$
- (3) $(\chi^*)_u = (\chi_u)^*$.

Property (1) in the above proposition is also satisfied by the Lusztig's correspondence (see Section 1) by [7]. In fact, (*) implies:

COROLLARY 3.5. The correspondence $\chi \leftrightarrow \chi_u$ in Theorem 3.3 coincides with the Lusztig's correspondence.

References

- D. Alvis, Duality and character values of finite groups of Lie type, J. Algebra 74 (1982), 211-222.
- 2. R. W. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, Wiley-Interscience, New York, 1985.
- 3. C. W. Curtis, Truncation and duality in the character ring of a finite group of Lie type, J. Algebra 62 (1980), 320-332.
- 4. P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. 103 (1976), 103-161.
- 5. P. Deligne and G. Lusztig, Duality for representations of a reductive group over a finite field, J. Algebra 74 (1982), 284-291; II, J. Algebra 81 (1983), 540-545.

266 In-Sok Lee

- 6. N. Kawanaka, Fourier transforms of nilpotently supported invariant functions on a simple Lie algebra over a finite field, Invent. Math. 69 (1982), 411-435.
- 7. G. Lusztig, Characters of Reductive Groups over a Finite Field, Ann. of Math. Studies, No. 107, Princeton Univ. Press, Princeton, N. J., 1984.

Department of Mathematics Seoul National University Seoul 151-742, Korea