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SEPARABLE TWISTED GROUP ALGEBRAS

YOUNG SOO PARK AND EUN SUP KIM

1. Introduction

A very satisfactory characterization of group rings which are Azumaya
algebras has been obtained by DeMeyer and Janusz in [3]. That is, KG
is an Azumaya algebra if and only if [G; ((G)] < 00 and G' is finite with
IG,/-l E K. However, the twisted group ring case does not seem to have
an analogous characterization in general. Hence we have a question :
when is a twisted group algebra an Azumaya algebra ?

In this paper, we give a partial solution of it, which generalizes the
r{~;ult of DeMeyer and Janusz [3J. In particular, we show that if a is a
symmetric cocycle in ((G) and [G : ((G)] < 00 with [G : ((G)]-l E F,
then FOG is an Azumaya algebra. Moreover, if G is a torsion-free,
hypercentral group and FOG is an Azumaya algebra, then [G : ((G)J <
00. G will denote a group, ((G) the center of G, K a commutative ring
with 1, K* the group of units of K and F a field. We recall that a ring
is an Azumaya algebra if it is separable over its center.

2. Main results

It is easy to verify the next lemma.

LEMMA 1. Let K and L be integral domains with K eLand let
a E Z2(G,K*). Then

(1) L 0K KOG ~ LOG as L-algebras
(2) ((V~G) ~ L 0K ((KoG)
(3) LOG = ((LoG) 0,(K<>G) KOG as L-algebras.
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THEOREM 2. Let F and L be fields with F ~ L and let a E Z2(G, F*).
Then FaG is an Azumaya algebra if and only if LaG is an Azumaya al­
gebra.

Proof. Suppose LaG is an Azumaya algebra. Since

((LaG) = L ®F ((FaG)

~ (IIF) @F ((FaG)

~ II(F ®F ((FaG))

~ II((FaG),

((FaG) is a direct summand of ((LaG) as ((Fa G)-module.
By Lemma 1 and Corollary 1.10 of [2], FaG is an Azumaya algebra.
Conversely, suppose FaG is an Azumaya algebra. VJtG = ((LaG)

®~(FaG)FaG is an Azumaya algebra.

THEOREM 3. Let G = ((G)H for some subgroup H of G and let a
be a symmetric cocyc1e in ((G).

Then FaG is an Azumaya algebra if and only if FaH is an Azumaya
algebra.

Proof. Let T be a set of elements in ((G) which represent the cosets
of H in G. Then any element 9 in G has a unique representation 9 = ht
with t E T, hE H.

Since a is symmetric, if 9 is an a-regular element of G and the a­
regular class sum of 9 is finite, then h is an a-regular element of H and
the a-regular class sum of h is finite. Thus

((FaG) = Ee L((FaH)t.
tET

Since
FaG = ffi L: FaHt,

tET

FaG = ((FaG) @~(FaH) Fa H.

Now since ((FaH) is a direct summand of ((FaG), the equivalence
stated in the theorem follows from Corollary 1.7 and Corollary 1.10 of
[2].
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THEOREM 4. H [G : (G)] < 00, [G : (G)t 1 E F and a is a sym­
metric cocycle in ( G), tben FaG is an Azumaya algebra.

Proof. It suffices to show that there exists a separability idempotent
e in FaG @C(FOIG) (FaG)o. Let T be a transversal for (G) in G. Let
e = [G : (G)]-1 }:[0[-1. Then it is sufficient to show (x0l)e = (l@x)e
for all x E G. For each tin T, there is c E (G), sET such that xt = se.

Since x[ = a(x, t)a(s, c)-l sc and a is symmetric,

(x ® 1)([ @[-1) = x[ ® [-1

= a(x,t)O'(s,c)-l sc @[-1

= s@a(x,t)a(s,e)-lcf-l

= S@s-I X

=s@xs-1

= (1 @ x)(S@s-I).

As t runs through the elements of T, so does s. Thus FaG is an
Azumaya algebra.

A group G is said to be hypercentral if every nontrivial factor group
of G has nontrivial center. One example of a hypercentral group is of
course a nilpotent group. In fact, a finitely generated hypercentral group
is nilpotent by a result of Mal'cev (6].

LEMMA 5 ([b]). H G is a torsion-free bypercentral group, tben 6(G)
is the center of G.

THEOREM 6. IfG is a torsion-free hypercentral group and FaG is an
Azumaya algebra, tben the center ( G) bas finite index in G.

Proof. Let FaG be an Azumaya algebra. Then FaG is a finitely
generated projective (FQG)-module. Since the a-regular class sums
c(g) span (FaG) as g runs through 6, (FaG) is a subring of F Q 6.
Let T be a transversal for b. in G. Then FaG = El7 }:FQ 6l. Since FaG
is finitely generated over a subring of Fa6, it follows that the group
G/6 is finite. From Lemma 4, G/ ( G) is finite.
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