SEPARABLE TWISTED GROUP ALGEBRAS

YOUNG SOO PARK AND EUN SUP KIM

1. Introduction

A very satisfactory characterization of group rings which are Azumaya algebras has been obtained by DeMeyer and Janusz in [3]. That is, KG is an Azumaya algebra if and only if $[G; \zeta(G)] < \infty$ and G' is finite with $|G'|^{-1} \in K$. However, the twisted group ring case does not seem to have an analogous characterization in general. Hence we have a question: when is a twisted group algebra an Azumaya algebra?

In this paper, we give a partial solution of it, which generalizes the result of DeMeyer and Janusz [3]. In particular, we show that if α is a symmetric cocycle in $\zeta(G)$ and $[G:\zeta(G)]<\infty$ with $[G:\zeta(G)]^{-1}\in F$, then $F^{\alpha}G$ is an Azumaya algebra. Moreover, if G is a torsion-free, hypercentral group and $F^{\alpha}G$ is an Azumaya algebra, then $[G:\zeta(G)]<\infty$. G will denote a group, $\zeta(G)$ the center of G, K a commutative ring with 1, K^* the group of units of K and F a field. We recall that a ring is an Azumaya algebra if it is separable over its center.

2. Main results

It is easy to verify the next lemma.

LEMMA 1. Let K and L be integral domains with $K \subset L$ and let $\alpha \in Z^2(G, K^*)$. Then

- (1) $L \otimes_K K^{\alpha}G \cong L^{\alpha}G$ as L-algebras
- $(2) \ \zeta(L^{\alpha}G) \cong L \otimes_K \zeta(K^{\alpha}G)$
- (3) $L^{\alpha}G = \zeta(L^{\alpha}G) \otimes_{\zeta(K^{\alpha}G)} K^{\alpha}G$ as L-algebras.

Received May 3,1991.

The authors acknowledge the support of both Korean Science and Engineering Foundation, and the Basic Science Research Institute Program, Ministry of Education 1990.

THEOREM 2. Let F and L be fields with $F \subseteq L$ and let $\alpha \in Z^2(G, F^*)$. Then $F^{\alpha}G$ is an Azumaya algebra if and only if $L^{\alpha}G$ is an Azumaya algebra.

Proof. Suppose $L^{\alpha}G$ is an Azumaya algebra. Since

$$\zeta(L^{\alpha}G) = L \otimes_{F} \zeta(F^{\alpha}G)
\cong (\coprod F) \otimes_{F} \zeta(F^{\alpha}G)
\cong \coprod (F \otimes_{F} \zeta(F^{\alpha}G))
\cong \coprod \zeta(F^{\alpha}G),$$

 $\zeta(F^{\alpha}G)$ is a direct summand of $\zeta(L^{\alpha}G)$ as $\zeta(F^{\alpha}G)$ -module.

By Lemma 1 and Corollary 1.10 of [2], $F^{\alpha}G$ is an Azumaya algebra. Conversely, suppose $F^{\alpha}G$ is an Azumaya algebra. $L^{\alpha}G = \zeta(L^{\alpha}G)$ $\otimes_{\zeta(F^{\alpha}G)}F^{\alpha}G$ is an Azumaya algebra.

THEOREM 3. Let $G = \zeta(G)H$ for some subgroup H of G and let α be a symmetric cocycle in $\zeta(G)$.

Then $F^{\alpha}G$ is an Azumaya algebra if and only if $F^{\alpha}H$ is an Azumaya algebra.

Proof. Let T be a set of elements in $\zeta(G)$ which represent the cosets of H in G. Then any element g in G has a unique representation g = ht with $t \in T$, $h \in H$.

Since α is symmetric, if g is an α -regular element of G and the α -regular class sum of g is finite, then h is an α -regular element of H and the α -regular class sum of h is finite. Thus

$$\zeta(F^{\alpha}G) = \bigoplus \sum_{t \in T} \zeta(F^{\alpha}H)\bar{t}.$$

Since

$$F^{\alpha}G = \bigoplus \sum_{t \in T} F^{\alpha}H\bar{t},$$

$$F^{\alpha}G = \zeta(F^{\alpha}G) \otimes_{\zeta(F^{\alpha}H)} F^{\alpha}H.$$

Now since $\zeta(F^{\alpha}H)$ is a direct summand of $\zeta(F^{\alpha}G)$, the equivalence stated in the theorem follows from Corollary 1.7 and Corollary 1.10 of [2].

THEOREM 4. If $[G:\zeta(G)]<\infty$, $[G:\zeta(G)]^{-1}\in F$ and α is a symmetric cocycle in $\zeta(G)$, then $F^{\alpha}G$ is an Azumaya algebra.

Proof. It suffices to show that there exists a separability idempotent e in $F^{\alpha}G \otimes_{\zeta(F^{\alpha}G)} (F^{\alpha}G)^{\circ}$. Let T be a transversal for $\zeta(G)$ in G. Let $e = [G : \zeta(G)]^{-1} \sum \bar{t} \otimes \bar{t}^{-1}$. Then it is sufficient to show $(\bar{x} \otimes 1)e = (1 \otimes \bar{x})e$ for all $x \in G$. For each t in T, there is $c \in \zeta(G)$, $s \in T$ such that xt = sc. Since $\bar{x}\bar{t} = \alpha(x,t)\alpha(s,c)^{-1}\bar{s}\bar{c}$ and α is symmetric,

$$(\bar{x} \otimes 1)(\bar{t} \otimes \bar{t}^{-1}) = \bar{x}\bar{t} \otimes \bar{t}^{-1}$$

$$= \alpha(x,t)\alpha(s,c)^{-1}\bar{s}\bar{c} \otimes \bar{t}^{-1}$$

$$= \bar{s} \otimes \alpha(x,t)\alpha(s,c)^{-1}\bar{c}\bar{t}^{-1}$$

$$= \bar{s} \otimes \bar{s}^{-1}\bar{x}$$

$$= \bar{s} \otimes \bar{x}\bar{s}^{-1}$$

$$= (1 \otimes \bar{x})(\bar{s} \otimes \bar{s}^{-1}).$$

As t runs through the elements of T, so does s. Thus $F^{\alpha}G$ is an Azumaya algebra.

A group G is said to be hypercentral if every nontrivial factor group of G has nontrivial center. One example of a hypercentral group is of course a nilpotent group. In fact, a finitely generated hypercentral group is nilpotent by a result of Mal'cev [6].

LEMMA 5 ([b]). If G is a torsion-free hypercentral group, then $\triangle(G)$ is the center of G.

THEOREM 6. If G is a torsion-free hypercentral group and $F^{\alpha}G$ is an Azumaya algebra, then the center $\zeta(G)$ has finite index in G.

Proof. Let $F^{\alpha}G$ be an Azumaya algebra. Then $F^{\alpha}G$ is a finitely generated projective $\zeta(F^{\alpha}G)$ -module. Since the α -regular class sums $c(\bar{g})$ span $\zeta(F^{\alpha}G)$ as g runs through Δ , $\zeta(F^{\alpha}G)$ is a subring of $F^{\alpha}\Delta$. Let T be a transversal for Δ in G. Then $F^{\alpha}G = \bigoplus \sum F^{\alpha}\Delta \bar{t}$. Since $F^{\alpha}G$ is finitely generated over a subring of $F^{\alpha}\Delta$, it follows that the group G/Δ is finite. From Lemma 4, $G/\zeta(G)$ is finite.

References

- 1. G. Azumaya, Separable rings, J. Alg. 63 (1980), 1-14.
- 2. F.R. DeMeyer and E. Ingraham, Separable algebras over commutative rings, vol. 181, Lecture Notes in Math., Springer, Berlin and New York, 1971.
- 3. F.R. DeMeyer and G.J. Janusz,, Group rings which are Azumaya algebra, Trans. Amer. Math. Soc. 279 (1983), 389-395.
- 4. G.J. Janusz, Separable algebras over commutative rings, Trans. Amer. Math. Soc. 122 (1966), 416-479.
- G. Karpilovsky, Projective representations of finite groups, Marcel Dekker, Inc., 1985
- 6. D.H. McLain, Remarks on the upper central series of a group, Proc. Glasgow Math. Assoc. 3 (1956), 38-44.
- 7. Y.S. Park and E.S. Kim, The center of twisted group algebras over connected rings, Math. Japonica 36 (1991), 977-981.

Department of Mathematics Kyungpook National University Taegu 702-701, Korea