Comm. Korean Math. Soc. 6(1991), No. 2, pp. 233-238

ON SEMIORDERINGS OF LEVEL 2n

DAE YEON PARK

1. Introduction

It is said that the idea of (quadratic) semiorderings is based back to Baer in an appendix of his book Linear Algebra and Projective Geometry [1]. A semiordering is well thought to be a certain generalization of positive cones and orders (cf. orderings) [2,9]. Prestel riveived this important notation and studied the relationship between semiorderings and valuations [11,12]. These semiorderings are generalized to semiorderings of level 2^n , furthermore to *T*-semiorderings where *T* is a preordering of level 2^n [2]. In this paper, we generalized above terminologies to semiorderings of level 2n, furthermore to *T*-semiorderings where *T* is a preordering of level 2n and investigate the relationship as possible between these notions (semiorderings of level 2n, *T*-semiorderings) and valuations by using the notion of compatibility.

2. Preliminaries

By a semiordering S of level 2n of a field F, we mean a subset S of F satisfing the following properties :

(1) $S + S \subset S$ (2) $F^{2n}S \subset S$ (3) $S \cap -S = \{0\}$ (4) $S \cup -S = F$.

In view of (3), we see char(F) = 0. Furthermore S is said to be a normed semiordering of level 2n if $1 \in S$ and above properties hold. Especially S is said to be a quardratic semiordering (q-ordering) if n = 1 and $1 \in S$. As orderings [9], S determines a linear order \leq on F by $a \leq b \Leftrightarrow b - a \in S$.

Received March 11, 1991.

Dae Yeon Park

By a valuation on a field F, we shall always mean a Krull valuation $v: F^* := F - \{0\} \to \Gamma$ onto a (totally) ordered abelian group Γ , satisfying the two axioms :

(1)
$$v(xy) = v(x) + v(y)$$
 for any $x, y \in F^*$,

(2) $v(x+y) \ge \min\{v(x), v(y)\}$ for any $x, y, x+y \in F^*$.

The value group Γ will always be written additively, unless it is stated otherwise. For a given valuation v on F, we can define following collection of associated objects :

$$A := \{x \in F : x = 0 \text{ or } v(x) \ge 0\}$$
 (the valuation ring of v),
 $I := \{x \in F : x = 0\}$ or $v(x) > 0$ the maximal ideal of v),
 $U := A \setminus I$ (the group of valuation units),
 $\overline{F} := A/I$ (the residue class field of v).

Usually we work with one valuation at a time, so given $x \in A$ we shall simply write \bar{x} for x + I, its image in the residue class field. In the same vein, we shall adopt the following; For any subset $T \subseteq F$, let \bar{T} denote the image of $T \cap A$ in the residue field \bar{F} . We shall refer to \bar{T} as the pushdown of T (along v) into \bar{F} .

A semiordering S of level 2n of F will be said to be compatible with a valuation v of F (or v compatible with S) if

$$0 < a \leq b \Rightarrow v(a) \geq v(b)$$
 for all $a, b \in F$.

A symmetric subset A of F (i.e. $a \in A \Rightarrow -a \in A$) is called convex with respect to S if

$$x < y < z$$
, where $x, z \in A \Rightarrow y \in A$.

PROPOSITION 2.1. Let v be a valuation of F and S be a semiordering of level 2n. Consider the following statements :

- (1) S is compatible with v
- (2) A is convex with respect to S
- (3) I is convex with respect to S
- (4) $0 \le a \in I \Rightarrow a < 1$.

234

Then $(1) \Rightarrow (2)$ and $(1) \Rightarrow (3) \Rightarrow (4)$ hold.

Proof. Suppose S is compatible with v. If x < y < z, where $x, z \in A$, then 0 < y - x < z - x and so by (1), $v(y - x) \ge v(z - x) \ge 0$. Hence $y - x \in A$ implies $y \in A$ and A is convex with repect to S. This means (1) \Rightarrow (2). Suppose $a \ge 1$. Then 1 is contained in I. It is a contradiction. So a < 1 and this means (3) \Rightarrow (4).

Let S be a normed semiordering of level 2n. Setting

$$A(S) = \{a \in F: -k \leq a \leq k ext{ for some } k \in N\}$$

In [3], Becker proved that A(S) is a valuation ring. Take $S^* = S - \{0\}$, for any nonempty subset S in a field. Then we get a following proposition.

PROPOSITION 2.2. Let S be normed semiordering of level 2n. Then

$$S\cap U=\{a:a\in U,ar{a}\in (ar{S})^*\}.$$

Proof. Clearly \subseteq holds. Consider $\bar{a} \in (\bar{S})^*$. Assume $a \notin S$, then $-a \in S$ and $-\bar{a} \in (\bar{S})$. Since \bar{S} is an order [3], it is a contradiction.

PROPOSITION 2.3. Let S be a normed semiordering of level 2n. Then the family Λ of valuation rings in F convex with respect to S forms a chain under inclusion. A(S) is the smallest member in Λ .

Proof. Suppose $A, B \in \Lambda$ but A is not a subset of B. By convexity of A, B, we have $B \subset A$.

So we have a following result.

COROLLARY 2.4. Let S be a normed semiordering of level 2n. If S is compatible with v, then $A \supset A(S)$.

Proof. By proposition 2.1, it hold clearly.

PROPOSITION 2.5. Let S be a normed semiordering of level 2n and v be a valuation F, where Γ is written additively. Consider the following statements :

(1) S is compatible with v.

- $(1') (1+I)S \subseteq S.$
- (2) A is convex with respect to S.
- $(2') (S \setminus A) + A \subseteq S.$
- (3) I is convex with respect to S.
- (3') $(S \setminus I) + I \subseteq S$. Then we can get $(1) \iff (1') \Longrightarrow (2) \iff (2')$ and $(1) \Longrightarrow (3) \iff (3')$.

Proof. Let $m \in I$ and $s \in S$. We want show that $(1 - m)s \in S$. If not, s < sm with $s \neq 0, m \neq 0$. So $v(s) \geq v(sm) = v(S) + v(m)$ and $v(m) \leq 0$ in Γ . It is a contradiction and this means $(1) \Rightarrow (1')$. If v(a) < v(b) in Γ and $a \in S^* = S - \{0\}$. Then $\frac{b}{a}$ in I and so $a - b = a(1 - \frac{b}{a}) \in S^*(1 + I) \subseteq S^*$ Hence b < a. This means $(1) \Leftarrow (1')$. Others are similar.

Becker showed in [3] that for a valuation ring A and a normed semiordering of level 2n in a field F, A contains A(S) if $1 + I \subset S$. Furthermore he proved that the following statements are equivelent:

- (1) $(1+I)(U \cap S) \subset S$.
- (2) \overline{S} is a semiordering of level of 2n in A/I.
- (3) $(1+I) \subset S$.

S is said to be weakly compatible with v if any one of them hold. We can have a following statement with respect to above.

PROPOSITION 2.6. Let $\phi : A \longrightarrow A/I$ be the projection map and $\overline{S} = \phi(A \cap S)$ be the pushdown of normed semiordering of level 2n. Then $\phi^{-1}((\overline{S})^*) \subset S$ is equivalent to above statements.

Proof. Suppose $\phi^{-1}((\bar{S})^*) \subseteq S$. Let $x \in S \cap U$ and $y \in 1 + I$ then $\phi(xy) = xy + I = x + I \in (\bar{S})^*$ and $xy \in \phi^{-1}((\bar{S})^*) \subset S$. Conversely suppose that $(S \cap U)(1 + I) \subset S$. Then S is a semondering of level 2n in A/I. Let $x \in \phi^{-1}((\bar{S})^*)$. This implies $x \in U$ with $\bar{x} \in (\bar{S})^*$. If $x \notin S$, then $\bar{x} \in -\bar{S}$. It is a contradiction. Therefore $x \in S$.

3. T-semiordering

By definition, a precordering T of level 2n on a field F is given by a subset $T \subset F$ with $-1 \notin T, T + T \subset T, F^{2n} \subset T$, and $TT \subset T$.

236

A nonempty set $M \subseteq F$ will be called a T-module if $M + M \subseteq M$ and $TM \subseteq M$ where T is a preordering of level 2n. In particular, we always have $0 \in M$. In this case, $M \cap -M = \{0\}$ if and only if for $m_i \in M^* = M - \{0\}$ and $t_i \in T, t_1m_1 + t_2m_2 + \dots + t_rm_r = 0$ implies $t_i = 0$. We shall say that M is an anisotropic T-module if the above holds. Let M be an anisotropic T-module and $a \in F^* = F - \{0\}$ in a formally real field [8], then $a \notin -M$ if and only if M' := M + Tais an anisotropic T-module. Furthermore in the case of anisotropic Tmodule $M \neq F$, M is maximally anisotropic if and only if $M \cup -M = F$. Therefore T-module $M \neq F$ which is maximally aisotropic is clearly a semiordering of level 2n. Let T be a preordering of level 2n. A subset S of F is called a T-semiordering if $S + S \subset S$, $TS \subset S$, $S \cap -S = \{0\}$ and $S \cap -S = F$. Since $F^{2n} \subset T, S$ is always a semiordering of level 2n. Then above statement hold if S is a normed T-semiordering of level 2n. Let

$$A(S) = \{a \in F: -k \leq a \leq k ext{ for some } k \in N\}$$

and

$$I(S) = \{a \in F : rac{-1}{k} \le a \le rac{1}{k} ext{ for some } k \in N \}$$

For a normed semiordering S of higher level. This A(S) is a valuation ring of F and I(S) is the maximal ideal of A(S) [3]. By computation A(S) is convex. Furthermore we have

PROPOSTION 3.1. For any normed T-semiordering S, there is a residually real valuation ring A(S) with valuation v_s which is weakly compatible with S such that \overline{S} is an order of A(S)/I(S).

Proof. Suppose x < y < z with $x, z \in I(S)$. Since A(S) is convex I(S) is convex. By proposition 2.5 S is weakly compatible with v_s .

Let S be a normed T-module and v be any valuation compatible with S such that the pushdown \overline{S} is an order [cf, proposition 2.2]. Since $TS \subset S$, we have $\overline{T} \subset \overline{S}$. Then we can form the wedge product $T \wedge \overline{S} =$ $T\phi^{-1}((\bar{S})^*)$, which is a preordering of level 2n in F [5]. Furthermore, since v is compatible with S, I is convex with respect to S, which is equivalant to $(S \setminus I) + I \subseteq S$. So $1 + I \subset S$ (*i.e.*, weakly compatible), and we have $\phi^{-1}((\bar{S})^*) \subset S$ by proposition 2.6. Hence $T \wedge \bar{S} = T \phi^{-1}((\bar{S})^*) \subset S$ S.

LEMMA 3.2. For $a \in S^*$, $v(a) \in v(T^*)$ if and only if $a \in T \land \overline{S}$.

Proof. Suppose $v(a) \in v(T^*)$ then v(a) = v(t) for some $t \in T$. Since $v(\frac{a}{t}) = 0, a = tu$ for some $u \in U$. So $u \in S^* \cap U \subset \phi^{-1}((\bar{S})^*)$. Hence $a \in T \land \bar{S}$. Conversely it hold similarly.

PROPOSITION 3.3. Let S, v be as above such that \overline{S} is an order and let $\{a_i; i \in I\} \subset S^*$ generates S as a T-modules. If $v(a_i) \in v(T^*)$ for all i, then S is preordering of level 2n (Especially S is closed under multiplication)

Proof. By above lemma, we have $a \in T \land \overline{S}$ for any *i*. So $S = \sum Ta_i, \subseteq T \land \overline{S} \subseteq S$. Hence $S = T \land \overline{S}$ and S is a preordering of level 2*n*. (Especially S is closed under multiplication.)

References

- 1. R. Baer, Linear algebra and projective geometry, Academic Press, New York, 1952.
- 2. E. Becker, Hereditary-pythagorean fields and ordering of higher level, Monografis de Matematica No. 29. Instituto de pura e Aplicada Rio de Janeiro.
- 3. E.Becker, Local global theorem for diagonal forms, J. Reine und Angew. Math. 318 (1980), 36-50.
- E. Becker, J. Harman and A. Rosenberg, Signatures of fields and extension theory, J. Reine und Angew. Math. 330 (1982), 53-75.
- 5. E. Becker and A. Rosenberg, Reduced forms and Reduced Witt rings of higher level, J. Alg. (1982), 1-54.
- 6. O. Endler, Valuation theory, Belin-Heidelberg, New York, 1972.
- 7. N. Jacobson, Lectures in abstract algebra, D. Nostrand Co. Inc., 1964.
- 8. T. Lam, The algebraic theory of quadratic forms, W. A. Benjaming, Inc., 1973.
- 9. _____, Orderings, Valuationa and Quadratic forms, CBMS. No. 52, AMS. (1983).
- 10. D. Y. Park, On Preorderings of higher level, Communications of KMS 3 No. 1 (1988).
- 11. A. Prestel, Lectures on formally real fields, Springer-Verlag, New York, 1985.
- 12. ____, Quadratische semiodernungen und quadratische formen, Math. Z. 142 (1975), 95.

Department of Mathematics Education Jeonju University Jeonju 560–759, Korea

238