Comm. Korean Math. Soc. 6(1991), No. 2, pp. 225-231

ORDER OF STARLIKENESS FOR MULTIPLIERS OF MEROMORPHIC UNIVALENT FUNCTIONS

NAK EUN CHO

1. Introduction

Let \sum denote the class of functions of the form

(1.1)
$$f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n$$

which are regular in $D = \{z : 0 < |z| < 1\}$ with a simple pole at the origin with residue 1 there. Let \sum_s , $\sum^*(\alpha)$ and $\sum_k(\alpha)$ ($0 \le \alpha < 1$) denote the subclasses of \sum that are univalent, meromorphically starlike of order α and meromorphically convex of order α , respectively. Analytically, f, of the form (1.1), is in $\sum^*(\alpha)$, if and only if

(1.2)
$$Re\left\{-\frac{zf'(z)}{f(z)}\right\} > \alpha$$

for $z \in U = \{z : |z| < 1\}$. Similarly, $f \in \sum_k (\alpha)$ if and only if f is of the form (1.1) and satisfies

(1.3)
$$Re\{-(1+\frac{zf''(z)}{f'(z)})\} > \alpha$$

for $z \in U$.

The class $\sum^{*}(\alpha)$ and similar other classes have been extensively studied by Pommerenke[7], Clunie[2], Miller[5], Royster[8] and others.

Received March 16, 1991.

Nak Eun Cho

Let \sum_{p} denote the class of functions of the form

(1.4)
$$f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n, \ a_n \ge 0,$$

that are regular and univalent in D and set $\sum_{p}^{*}(\alpha) = \sum_{p} \bigcap \sum_{n}^{*}(\alpha)$. It is further known [6] that a necessary and sufficient condition for a function to be in $\sum_{p}^{*}(\alpha)$ is that its coefficients satisfy

(1.5)
$$\sum_{n=1}^{\infty} (n+\alpha)a_n \leq 1-\alpha.$$

In [1], it was proved that the integral transform

(1.6)
$$J(f) = \int_0^1 u f(uz) du$$

preserves meromorphically starlikeness (convexity). In particular, it was shown [6] that the integral transform takes meromorphically starlike functions to functions meromorphically starlike of order $\frac{1}{2}$.

In this paper, we introduce a general class that will incorporate most of the subclasses in [6, 10] and for which we determine extreme points, distortion properties, order of meromorphically starlikeness, radius of meromorphically convexity and other extremal properties.

DEFINITION. A function $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n$, $a_n \ge 0$, is said to be in the class $\sum \{\{b_n\}\}$ if there exists a sequence $\{b_n\}$ of positive real numbers such that $\sum_{n=1}^{\infty} b_n a_n \le 1$.

2. Extremal properties

THEOREM 1. $\sum(\{b_n\})$ is a convex class and, if $\sum(\{b_n\}) \subset \sum_p$, then $b_n \geq n$ for every n.

Proof. If $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n$ and $(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n$ are in $\sum(\{b_n\})$ and $0 \le \lambda \le 1$, then $\sum_{n=1}^{\infty} (\lambda a_n + (1-\lambda)c_n)b_n = \lambda \sum_{n=1}^{\infty} a_n b_n + (1-\lambda)c_n b_n = \lambda \sum$

226

 $(1-\lambda)\sum_{n=1}^{\infty}c_nb_n \leq \lambda + (1-\lambda) = 1$ so that $\lambda f + (1-\lambda)g \in \sum(\{b_n\})$. Hence, $\sum(\{b_n\})$ is a convex class.

If $b_n < n$ for some *n*, then $f_n(z) = \frac{1}{z} + \frac{z^n}{b_n}$ has a derivative that vanishes at $z = (\frac{b_n}{n})^{\frac{1}{n+1}} < 1$ and $f_n(z) \in \sum(\{b_n\})$ is not univalent in *D*.

Let us write $\sum_{p}(\{b_n\}) = \sum_{p} \bigcap \sum (\{b_n\})$ where \sum_{p} is the class of functions of the form (1.4) that are regular and univalent in D. Note that $\sum_{p}(\{\frac{n+\alpha}{1-\alpha}\}) = \sum_{p}^{*}(\alpha)$. We say that the order of meromorphically starlikeness of the class $\sum_{p}(\{b_n\})$ is α if $\sum_{p}(\{b_n\}) \subset \sum_{p}^{*}(\alpha)$ and $\sum_{p}(\{b_n\}) \not\subset \sum_{p}^{*}(\beta)$ for any $\beta > \alpha$.

THEOREM 2. Let $f_o(z) = \frac{1}{z}$ and $f_n(z) = \frac{1}{z} + \frac{z^n}{b_n} (n = 1, 2, \cdots)$. Then $f \in \sum_{n = 0} \lambda_n f_n(z)$, if and only if it can be expressed in the form $f(z) = \sum_{n=0}^{\infty} \lambda_n f_n(z)$, where $\lambda_n \ge 0$ $(n = 0, 1, 2, \cdots)$ and $\sum_{n=0}^{\infty} \lambda_n = 1$.

Proof. If $f(z) = \sum_{n=0}^{\infty} \lambda_n f_n(z) = \frac{1}{z} + \sum_{n=1}^{\infty} (\frac{\lambda_n}{b_n}) z^n$, then $\sum_{n=1}^{\infty} b_n(\frac{\lambda_n}{b_n}) = \sum_{n=1}^{\infty} \lambda_n = 1 - \lambda_0 \le 1$. Thus, $f \in \sum_p(\{b_n\})$. Conversely, if $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n \in \sum_p(\{b_n\})$, set $\lambda_n = b_n a_n$ $(n = 1, 2, \cdots)$ and $\lambda_0 = 1 - \sum_{n=1}^{\infty} \lambda_n$. Then $f(z) = \sum_{n=0}^{\infty} \lambda_n f_n(z)$.

COROLLARY 1. The extreme points of $\sum_{p}(\{b_n\})$ are the functions $f_n(z)(n=0,1,2,\cdots)$.

COROLLARY 2. If $f \in \sum_{p} (\{b_n\}), \{b_n\}$ increasing, then

$$\frac{1}{r} - \frac{r}{b_1} = f_1(-r) \le |f(z)| \le f_1(r) = \frac{1}{r} + \frac{r}{b_1} (|z| = r).$$

Proof. The extremal function must be one of the extreme points. But $f_1(-r) \leq |f_n(z)| \leq f_1(r) \ (0 < |z| < r < 1).$

3. Order of meromorphically starlikeness

By (1.5), the function $f_1(z) = \frac{1}{z} + \frac{z}{b_1}$ is in $\sum_p^* (\frac{b_1 - 1}{b_1 + 1})$. The next theorem gives a condition on $\{b_n\}$ for which $f_1(z)$ is extremal.

Nak Eun Cho

THEOREM 3. If $b_n \geq \frac{(n+1)b_1+n-1}{2}$ for every *n*, then the order of meromorphically starlikeness of $\sum_p(\{b_n\})$ is $\frac{b_1-1}{b_1+1}$, with equality for $f_1(z) = \frac{1}{z} + \frac{z}{b_1}$.

Proof. For $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n$ in $\sum_p (\{b_n\})$, it suffices to show that

$$\left|\frac{\frac{zf'(z)}{f(z)}+1}{\frac{zf'(z)}{f(z)}+2(\frac{b_1-1}{b_1+1})-1}\right| = \left|\frac{\sum_{n=1}^{\infty}(n+1)a_nz^n}{2(1-\frac{b_1-1}{b_1+1})\frac{1}{z}-\sum_{n=1}^{\infty}(n+2(\frac{b_1-1}{b_1+1})-1)a_nz^n}\right|$$

$$\leq \frac{\sum_{n=1}^{\infty} (n+1)a_n |z|^{n+1}}{2(1-\frac{b_1-1}{b_1+1}) - \sum_{n=1}^{\infty} (n+2(\frac{b_1-1}{b_1+1}) - 1)a_n |z|^{n+1}} < 1$$

Upon clearing the denominator in the last expression and letting $|z| \rightarrow 1$, we obtain

$$\sum_{n=1}^{\infty} (\frac{(n+1)b_1 + n - 1}{2})a_n \le 1.$$

Since $b_n \ge \frac{(n+1)b_1+n-1}{2}$ and $\sum_{n=1}^{\infty} b_n a_n \le 1$, the result follows.

COROLLARY 1. If $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n \in \sum_p^*(\alpha)$, then the integral transform

$$g(z) = c \int_0^1 u^c f(uz) du, \ 0 < c < \infty,$$

$$= \frac{1}{z} + \sum_{n=1}^\infty \frac{ca_n}{n+c+1} z^n \in \sum_p \left(\frac{1+\alpha}{1+c+\alpha} \right)$$

Proof. Setting $b_n = \frac{(n+\alpha)(n+c+1)}{(1-\alpha)c}$, we see that $g \in \sum_p (\{b_n\})$. Since $\frac{b_1-1}{b_1+1} = \frac{1+\alpha}{1+c+\alpha}$, it suffices to show that $b_n \ge \frac{(n+1)b_1+n-1}{2}$, which is equivalent to $n^2 - 1 \ge 0$.

REMARK. When c = 1 and $\alpha = 0$, we obtain the results of [1,6].

228

COROLLARY 2. Let
$$b_n = (1 - \delta)n + \delta n(n + 1)$$
. Then $\sum_p (\{b_n\}) \subset \sum_p^* \left(\frac{1}{2+\alpha}\right)$ for $\delta \ge 0$, and $\sum_p (\{b_n\}) \not \subset \sum_p$ for $\delta < 0$.

Proof. Since $\frac{b_1-1}{b_1+1} = \frac{1}{2+\delta}$, Theorem 3 may be applied for $\delta \geq 0$ if $b_n \geq \frac{(n+1)b_1+n-1}{2}$, which is equivalent to $\delta(2n^2-n-1) \geq 0$. If $\delta < 0$, then $b_1 = 1 + \delta < 1$, so we see from Theorem 1 that $\sum_p (\{b_n\}) \not\subset \sum_p$.

4. Other extremal functions

The next theorem gives a coefficient condition for which other extreme points represent the extremal function.

THEOREM 4. If $b_n \geq \frac{(n+1)b_k+n-k}{k+1}$ for a fixed integer k and for every n, then the order of meromorphically starlikeness of $\sum_p (\{b_n\})$ is $\frac{b_k-k}{b_k+1}$, with equality for $f_k(z) = \frac{1}{z} + \frac{z^k}{b_k}$.

Proof. By Theorem 2, we may write $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} (\frac{\lambda_n}{b_n}) z^n$ where $\sum_{n=1}^{\infty} \lambda_n \leq 1$. We must show, for $\alpha = \frac{b_k - k}{b_k + 1}$, that $\sum_{n=1}^{\infty} \frac{(n+\alpha)\lambda_n}{(1-\alpha)b_n} \leq 1$. But $\frac{n+\alpha}{1-\alpha} = \frac{(n+1)b_k + n-k}{k+1} \leq b_n$ by hypothesis, so that $\sum_{n=1}^{\infty} \frac{(n+\alpha)\lambda_n}{(1-\alpha)b_n} \leq \sum_{n=1}^{\infty} \leq 1$, and the proof is complete.

COROLLARY. If $b_n > \frac{(n+1)b_k+n-k}{k+1}$ for every $n \neq k$, then $\sum_p (\{b_n\}) \subset \sum_p^* (\frac{b_k-k}{b_k+1})$, with equality only for $f_k(z) = \frac{1}{z} + \frac{z^k}{b_k}$.

Proof. It suffices to show, for $\alpha = \frac{b_k - k}{b_k + 1}$, that $\sum_{n=1}^{\infty} (\frac{n+\alpha}{1-\alpha}) \frac{\lambda_n}{b_n} < 1$ if $\lambda_k \neq 1$. Assume $\lambda_m > 0$ for some $m \neq k$. Since $b_m > \frac{m+\alpha}{1-\alpha}$ by hypothesis, we have

$$\sum_{n=1}^{\infty} \left(\frac{n+\alpha}{1-\alpha}\right) \frac{\lambda_n}{b_n} = \left(\frac{m+\alpha}{1-\alpha}\right) \frac{\lambda_m}{b_m} + \sum_{n \neq m} \left(\frac{n+\alpha}{1-\alpha}\right) \frac{\lambda_n}{b_n}$$
$$\leq \left(\frac{m+\alpha}{1-\alpha}\right) \frac{\lambda_m}{b_m} + \sum_{n \neq m} \lambda_n$$
$$< \lambda_m + \sum_{n \neq m} \lambda_n \leq 1.$$

REMARK. Above Corollary shows that the function $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} (\frac{\lambda_n}{b_n}) z^n$ in $\sum_p (\{b_n\})$ is meromorphically starlike of order greater than $\alpha = \frac{b_k - k}{b_k + 1}$, unless $\lambda_k = 1$.

EXAMPLE. Let $b_n = 2n$, $n \neq 2$ and $b_2 = 3$. Then $b_n > \frac{(n+1)b_2+n-2}{3}$ for $n \neq 2$, so that the order of meromorphically starlikeness of $\sum_p (\{b_n\})$ is $\frac{1}{4}$, with unique extremal function $f_2(z) = \frac{1}{z} + \frac{z^2}{3}$.

The final property we determine for the class $\sum_{p} (\{b_n\})$ is the radius of meromorphically conversity.

THEOREM 5. If $f \in \sum_{p}(\{b_n\})$, then f is meromorphically convex in the disk

$$|z| < \gamma_o = \inf_n (\frac{b_n}{n(n+2)})^{\frac{1}{n+1}} \quad (n = 1, 2, \cdots).$$

The result is sharp, with extremal function of the form $f_n(z) = \frac{1}{z} + \frac{z^n}{b_n}$ for some n.

Proof. For $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} (\frac{\lambda_n}{b_n}) z^n$, it suffices to show that $|2 + \frac{zf''(z)}{f'(z)}| \le 1$ for $|z| \le \gamma_o$. We have

$$|2 + \frac{zf''(z)}{f'(z)}| = |\frac{\sum_{n=1}^{\infty} n(n+1)\frac{\lambda_n}{b_n} z^{n-1}}{\frac{1}{z} - \sum_{n=1}^{\infty} (\frac{n}{b_n})\lambda_n z^{n-1}}|$$

$$\leq \frac{\sum_{n=1}^{\infty} n(n+1)(\frac{\lambda_n}{b_n})|z|^{n+1}}{1 - \sum_{n=1}^{\infty} (\frac{n}{b_n})\lambda_n |z|^{n+1}},$$

which is bounded above by 1, if

(*)
$$\sum_{n=1}^{\infty} n(n+2) \frac{\lambda_n}{b_n} |z|^{n+1} \leq 1.$$

Since $\sum_{n=1}^{\infty} \lambda_n \leq 1$, inequality (*) is true for $|z| \leq \gamma_o$.

References

- 1. S. K. Bajpai, A note on a class of meromorphic univalent functions, Rev, Roumanie Math. Pures Appl. 22 (1977), 295-297.
- 2. J. Clunie, On meromorphic schlicht functions, J. London Math. Soc. 34 (1959), 215-216.
- 3. R. M. Goel and N. S. Sohi, On a class of meromorphic functions, Glasnik Matematicki 17 (1981), 19-28.
- 4. O. P. Juneja and M. L. Mogra, On starlike functions of order α and type β, Rev. Roumaine Math. Pures Appl. 23 (1978), 751-765.
 J. E. Miller, Convex meromorphic mappings and related functions, Proc. Amer.
- Math. Soc. 25 (1970), 220–228.
- 6. M. L. Mogra, T. R. Reddy and O. P. Juneja, Meromorphic univalent functions with positive coefficients, Bull. Austral. Math. Soc. 32 (1985), 161-176.
- 7. Ch. Pommerenke, On meromorphic starlike functions, Pacific J. Math. 13 (1963), 221-235.
- 8. W. C. Royster, Meromorphic starlike multivalent functions, Trans. Amer. Math. Soc. 107 (1963), 300-308.
- 9. H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.
- 10. B. A. Uralegaddi and M. D. Ganigi, A certain class of meromorphically starlike functions with positive coefficients, Pure and Applied Math. Sci. 26 (1987), 75-81.

Department of Applied Mathematics National Fisheries University of Pusan Pusan 608-737, Korea