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ORDER OF STARLIKENESS FOR MULTIPLIERS
OF MEROMORPHIC UNIVALENT FUNCTIONS

Nax EuN CHo

1. Introduction

Let )" denote the class of functions of the form

(1.1) f@) =2+ ane”

n=1

which are regularin D = {2z : 0 < |z| < 1} with a simple pole at the origin
with residue 1 there. Let ., Y-*(a) and } ;(a) (0 < a < 1) denote
the subclasses of ) that are univalent, meromorphically starlike of order
a and meromorphically convex of order a, respectively. Analytically, f,
of the form (1.1), is in §_*(a), if and only if

(1.2) Re{—z}f('S)} >a

for z € U = {z: |2| < 1}. Similarly, f € }_;(a) if and only if f is of the
form (1.1) and satisfies

_ zf"(z) .
(1.3) Re{—-(1+ NZ0) )} >

forzeU.
The class 3 *(a) and similar other classes have been extensively stud-
ied by Pommerenke[7], Clunief2], Miller[5], Royster|8] and others.
Received March 16, 1991.
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Let )., denote the class of functions of the form

(1.4 f@) =2+ an", an 20,

n=1

that are regular and univalent in D and set 3 2(a) = 3,12 "(a). It is
further known [6] that a necessary and sufficient condition for a function
to be in 3 7(a) is that its coefficients satisfy

oo
(1.5) Y (n+a)a. <1-a
n=1
In 1], it was proved that the integral transform

(1.6) J'(f)z/0 uf(uz)du

preserves meromorphically starlikeness (convexity). In particular, it was
shown [6] that the integral transform takes meromorphically starlike
functions to functions meromorphically starlike of order 3.

In this paper, we introduce a general class that will incorporate most
of the subclasses in [6, 10] and for which we determine extreme points,
distortion properties, order of meromorphically starlikeness, radius of
meromorphically convexity and other extremal properties.

DEFINITION. A function f(z) = 1 + Y22, anz™, a, 20, is said to
be in the class Y ({bn}) if there exists a sequence {b,} of positive rea.
numbers such that } > | bpa, < 1.

2. Extremal properties
THEOREM 1. 3 ({b,}) is a convex class and, if 3 ({b.}) C 3_,, then

b, > n for every n.

Proof. f f(z) = 1 + 3% a,2" and (2) = 1 + 372, apz™ are in
S ({ba}) and 0 < A < 1, then 302 ,(Aan+(1—=A)en)bn = A 07 | Gnbn+
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(=X cabn <A+ (1= 1)) =1s0that Af + (1 — X)g € Y ({ba})-
Hence, > ({b,}) is a convex class.
If b, < n for some n, then f,(z) = % + -E; has a derivative that

vanishes at z = (%{L)?}FT < 1and fu(2) € >({b.}) is not univalent in D.

Let us write 35 ({ba}) = 22, 22({bn}) where 37 is the class of
functions of the form (1.4) that are regular and univalent in D. Note
that 3 ({#£2}) = ) 7(a). We say that the order of meromorphi-

cally starlikeness of the class 3 ({ba}) is o if 3°,({bn}) C > p(e) and
>p({6n}) € 3°5(B) for any B > a.

THEOREM 2. Let fo(z) = L and fo(z) =% + £(n=1,2,---). Then
f € 3 ,({bn}) if and only if it can be expressed in the form f(z) =
Y o0 Anfa(z), where A\, 2 0(n =0,1,2,---) and 3 o> An =1

Proof. If f(2) = 32024 Anfu(2) = 14+3°02,(32)2", then o2, ba(3>)
=Y me1An = 1 =2, < 1. Thus, f € 3° ({ba}). Conversely, if f(z) =
Ly aaz™ € 22,({8n}), set Ay = bnas (n = 1,2,---) and A¢ =
1— 302 An. Then f(2) =320 Anfa(2).

CoROLLARY 1. The extreme points of )  ({bn}) are the functions
fr(z)(n=0,1,2,--+).

CoROLLARY 2. If f € 37 ({bn}), {bn} increasing, then

T E = AN SIS AC) = 1+ (el =)

Proof. The extremal function must be one of the extreme points. But

Ji(=r) S fal2)| € fa(r) (0 <z] <r < D).

3. Order of meromorphically starlikeness

By (1.5), the function fi(z) = } + ¢ is in E;(%ﬁ%). The next

theorem gives a condition on {b,} for which f;(z) is extremal.



228 Nak Eun Cho

THEOREM 3. If b, > gn—ﬂlhin—- for every n, then the order of
meromorphically starlikeness of 2-,({ba}) is hol' with equality for

B F17
f](z) : + bl
Proof. For f(z) = ; + 302 anz" in 3 ({bs}), it suffices to show
that

zf’ ; +1 =] Yoo (n 4 1apz |
%?H(ﬁ})—l 201 - 3L - 5% (n+2(83L) — Dagzn

< Tt et o
2(1- 251) — Yo (n + 2 B53) — Danlz|H!

Upon clearing the denominator in the last expression and letting |z| — 1,

we obtain
sz ﬂ)'f%f" ~ <1

n=1

Since b, > {(tbbitn—1 14§ poa. < 1, the result follows.
2 n=1

COROLLARY 1. If f(z) = 1 4+ 3777 | anz™ € 3 7(), then the integral
transform

1
g(z) = c/ u®f(uz)du, 0 < c < oo,
0

o<

1 l14+a
—;+nz:1n+c+l Z (1+c+a

Proof. Setting b, = {otadntedl) "o coe that g € 2 p({bn}). Since

(1-oa)c

—L—:l;} =3 + t +a, it suffices to show that b, > L’_‘;tl_)_biﬁ—_ which is equiv-

alent ton? —-1>0.

REMARK. When ¢ = 1 and a = 0, we obtain the results of [1,6].
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COROLLARY 2. Let by = (1 —&)n + én(n+1). Then 3 ({bn}) C
s (345) for 620, a0d 3, ({ba}) ¢ T, for 6 <.

Proof. Since %l%; =3 +6, Theorem 3 may be applied for § > 0 if

by > L’illf’;_"'”_"l, which is equivalent to §(2n2 —n —1) > 0. If § < 0,
then b; = 146 < 1, so we see from Theorem 1 that 3 ({ba}) £ 3, -

4. Other extremal functions

The next theorem gives a coefficient condition for which other extreme
points represent the extremal function.

THEOREM 4. If b, > {n¥Ubedn=k ¢ . fived integer k and for every

E+1
n, then the order of meromorphically starlikeness of ) ,({bn}) is %‘:—3—;5,

with equality for fi(z) = -i- + -i{—.

Proof. By Theorem 2, we may write f(z) = 1 + E::l(%‘-:)z" where

- +a)An
Y o1 An < 1. We must show, for a = H, that Yo . %’_—Z%E- <1

But 2f2 = (“"'1&;" 2=k < b, by hypothesis, so that Yoo %i’—;%;’\f- <

Y mo; <1, and the proof is complete.

COROLLARY. If b, > Ll‘ﬂ),;"};%"—— for every n # k, then 3~ ({bn}) C

S (ﬁ), with equality only for fi(2) =1 + —:—:—.

Proof. It suffices to show, for a = II: ;f, that 327, (1'-'1'--‘!)—'L <1
if Ax # 1. Assume A, > 0 for some m # k. Since b, > —_15— by

hypothesis, we have

Z(n+a)_2\:n=(7'1rz;l—a);\_rn,,l+ Z(n-{—a))\_

l—-a a
n=1 n#Em
m+a. An
—_— A
(T, bm+z "
n#Em

<’\m+Z’\n51'

n#Em
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REMARK. Above Corollary shows that the function f(z) = 2+3°2
(-—‘l)z in 3°,({4»}) is meromorphically starlike of order greater than
unless Ay = 1.

o= gy b,.+l’

EXAMPLE. Let b, = 2n, n # 2 and b, = 3. Then b, > {filbein=2
for n # 2, so that the order of meromorphically stazrlikeness of 3°,({ba})
is §, with unique extremal function f(z) = 1 + %-.

The final property we determine for the class Ep({bn}) is the radius
of meromorphically converxity.

THEOREM 5. If f € EP({bn}), then f is meromorphically convex in
the disk

J2 < 7o = inf( ))+ (n=1,2---).

n(n+2

The result is sharp, with extremal function of the form f,(z) = 1 + 2

z b
for some n.

Proof. For f(z) = 1 + Ef’zl(z‘f)z", it suffices to show that |2 +
%(—zll < 1 for |z] < v,. We have

2+ 2@, Yoz n(n+1)gazm!

7 | T e

Yomer 7(n +1)(32)]2|"H
T 1= LG Al

which is bounded above by 1, if

[o o]

(*) Z n(n + 2) |z:|""'1 <1.

n=]

Since Y o0, An < 1, inequality (*) is true for |z] < 7,.
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