ORDER OF STARLIKENESS FOR MULTIPLIERS OF MEROMORPHIC UNIVALENT FUNCTIONS

Nak Eun Cho

1. Introduction

Let \sum denote the class of functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are regular in $D=\{z: 0<|z|<1\}$ with a simple pole at the origin with residue 1 there. Let $\sum_{s}, \sum^{*}(\alpha)$ and $\sum_{k}(\alpha)(0 \leq \alpha<1)$ denote the subclasses of \sum that are univalent, meromorphically starlike of order α and meromorphically convex of order α, respectively. Analytically, f, of the form (1.1), is in $\sum^{*}(\alpha)$, if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{-\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \tag{1.2}
\end{equation*}
$$

for $z \in U=\{z:|z|<1\}$. Similarly, $f \in \sum_{k}(\alpha)$ if and only if f is of the form (1.1) and satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{-\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>\alpha \tag{1.3}
\end{equation*}
$$

for $z \in U$.
The class $\sum^{*}(\alpha)$ and similar other classes have been extensively studied by Pommerenke[7], Clunie[2], Miller[5], Royster[8] and others.

[^0]Let \sum_{p} denote the class of functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n}, a_{n} \geq 0 \tag{1.4}
\end{equation*}
$$

that are regular and univalent in D and set $\sum_{p}^{*}(\alpha)=\sum_{p} \cap \sum^{*}(\alpha)$. It is further known [6] that a necessary and sufficient condition for a function to be in $\sum_{p}^{*}(\alpha)$ is that its coefficients satisfy

$$
\begin{equation*}
\sum_{n=1}^{\infty}(n+\alpha) a_{n} \leq 1-\alpha \tag{1.5}
\end{equation*}
$$

In [1], it was proved that the integral transform

$$
\begin{equation*}
J(f)=\int_{0}^{1} u f(u z) d u \tag{1.6}
\end{equation*}
$$

preserves meromorphically starlikeness (convexity). In particular, it was shown [6] that the integral transform takes meromorphically starlike functions to functions meromorphically starlike of order $\frac{1}{2}$.

In this paper, we introduce a general class that will incorporate most of the subclasses in $[6,10]$ and for which we determine extreme points, distortion properties, order of meromorphically starlikeness, radius of meromorphically convexity and other extremal properties.

Definition. A function $f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n}, a_{n} \geq 0$, is said to be in the class $\sum\left(\left\{b_{n}\right\}\right)$ if there exists a sequence $\left\{b_{n}\right\}$ of positive res. numbers such that $\sum_{n=1}^{\infty} b_{n} a_{n} \leq 1$.

2. Extremal properties

Theorem 1. $\sum\left(\left\{b_{n}\right\}\right)$ is a convex class and, if $\sum\left(\left\{b_{n}\right\}\right) \subset \sum_{p}$, then $b_{n} \geq n$ for every n.

Proof. If $f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n}$ and $(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n}$ are in $\sum\left(\left\{b_{n}\right\}\right)$ and $0 \leq \lambda \leq 1$, then $\sum_{n=1}^{\infty}\left(\lambda a_{n}+(1-\lambda) c_{n}\right) b_{n}=\lambda \sum_{n=1}^{\infty} a_{n} b_{n}+$
$(1-\lambda) \sum_{n=1}^{\infty} c_{n} b_{n} \leq \lambda+(1-\lambda)=1$ so that $\lambda f+(1-\lambda) g \in \sum\left(\left\{b_{n}\right\}\right)$. Hence, $\sum\left(\left\{b_{n}\right\}\right)$ is a convex class.

If $b_{n}<n$ for some n, then $f_{n}(z)=\frac{1}{z}+\frac{z^{n}}{b_{n}}$ has a derivative that vanishes at $z=\left(\frac{b_{n}}{n}\right)^{\frac{1}{n+1}}<1$ and $f_{n}(z) \in \sum\left(\left\{b_{n}\right\}\right)$ is not univalent in D.

Let us write $\sum_{p}\left(\left\{b_{n}\right\}\right)=\sum_{p} \cap \sum\left(\left\{b_{n}\right\}\right)$ where \sum_{p} is the class of functions of the form (1.4) that are regular and univalent in D. Note that $\sum_{p}\left(\left\{\frac{n+\alpha}{1-\alpha}\right\}\right)=\sum_{p}^{*}(\alpha)$. We say that the order of meromorphically starlikeness of the class $\sum_{p}\left(\left\{b_{n}\right\}\right)$ is α if $\sum_{p}\left(\left\{b_{n}\right\}\right) \subset \sum_{p}^{*}(\alpha)$ and $\sum_{p}\left(\left\{b_{n}\right\}\right) \not \subset \sum_{p}^{*}(\beta)$ for any $\beta>\alpha$.

Theorem 2. Let $f_{o}(z)=\frac{1}{z}$ and $f_{n}(z)=\frac{1}{z}+\frac{z^{n}}{b_{n}}(n=1,2, \cdots)$. Then $f \in \sum_{p}\left(\left\{b_{n}\right\}\right)$ if and only if it can be expressed in the form $f(z)=$ $\sum_{n=0}^{\infty} \lambda_{n} f_{n}(z)$, where $\lambda_{n} \geq 0(n=0,1,2, \cdots)$ and $\sum_{n=0}^{\infty} \lambda_{n}=1$.

Proof. If $f(z)=\sum_{n=0}^{\infty} \lambda_{n} f_{n}(z)=\frac{1}{z}+\sum_{n=1}^{\infty}\left(\frac{\lambda_{n}}{b_{n}}\right) z^{n}$, then $\sum_{n=1}^{\infty} b_{n}\left(\frac{\lambda_{n}}{b_{n}}\right)$ $=\sum_{n=1}^{\infty} \lambda_{n}=1-\lambda_{o} \leq 1$. Thus, $f \in \sum_{p}\left(\left\{b_{n}\right\}\right)$. Conversely, if $f(z)=$ $\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n} \in \sum_{p}\left(\left\{b_{n}\right\}\right)$, set $\lambda_{n}=b_{n} a_{n}(n=1,2, \cdots)$ and $\lambda_{0}=$ $1-\sum_{n=1}^{\infty} \lambda_{n}$. Then $f(z)=\sum_{n=0}^{\infty} \lambda_{n} f_{n}(z)$.

Corollary 1. The extreme points of $\sum_{p}\left(\left\{b_{n}\right\}\right)$ are the functions $f_{n}(z)(n=0,1,2, \cdots)$.

Corollary 2. If $f \in \sum_{p}\left(\left\{b_{n}\right\}\right),\left\{b_{n}\right\}$ increasing, then

$$
\frac{1}{r}-\frac{r}{b_{1}}=f_{1}(-r) \leq|f(z)| \leq f_{1}(r)=\frac{1}{r}+\frac{r}{b_{1}}(|z|=r) .
$$

Proof. The extremal function must be one of the extreme points. But $f_{1}(-r) \leq\left|f_{n}(z)\right| \leq f_{1}(r)(0<|z|<r<1)$.

3. Order of meromorphically starlikeness

By (1.5), the function $f_{1}(z)=\frac{1}{z}+\frac{z}{b_{1}}$ is in $\sum_{p}^{*}\left(\frac{b_{1}-1}{b_{1}+1}\right)$. The next theorem gives a condition on $\left\{b_{n}\right\}$ for which $f_{1}(z)$ is extremal.

Theorem 3. If $b_{n} \geq \frac{(n+1) b_{1}+n-1}{2}$ for every n, then the order of meromorphically starlikeness of $\sum_{p}\left(\left\{b_{n}\right\}\right)$ is $\frac{b_{1}-1}{b_{1}+1}$, with equality for $f_{1}(z)=\frac{1}{z}+\frac{z}{b_{1}}$.

Proof. For $f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n}$ in $\sum_{p}\left(\left\{b_{n}\right\}\right)$, it suffices to show that

$$
\begin{gathered}
\left|\frac{\frac{z f^{\prime}(z)}{f(z)}+1}{\frac{z f^{\prime}(z)}{f(z)}+2\left(\frac{b_{1}-1}{b_{1}+1}\right)-1}\right|=\left|\frac{\sum_{n=1}^{\infty}(n+1) a_{n} z^{n}}{2\left(1-\frac{b_{1}-1}{b_{1}+1}\right) \frac{1}{z}-\sum_{n=1}^{\infty}\left(n+2\left(\frac{b_{1}-1}{b_{1}+1}\right)-1\right) a_{n} z^{n}}\right| \\
\leq \frac{\sum_{n=1}^{\infty}(n+1) a_{n}|z|^{n+1}}{2\left(1-\frac{b_{1}-1}{b_{1}+1}\right)-\sum_{n=1}^{\infty}\left(n+2\left(\frac{b_{1}-1}{b_{1}+1}\right)-1\right) a_{n}|z|^{n+1}}<1
\end{gathered}
$$

Upon clearing the denominator in the last expression and letting $|z| \rightarrow 1$, we obtain

$$
\sum_{n=1}^{\infty}\left(\frac{(n+1) b_{1}+n-1}{2}\right) a_{n} \leq 1
$$

Since $b_{n} \geq \frac{(n+1) b_{1}+n-1}{2}$ and $\sum_{n=1}^{\infty} b_{n} a_{n} \leq 1$, the result follows.
Corollary 1. If $f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n} \in \sum_{p}^{*}(\alpha)$, then the integral transform

$$
\begin{aligned}
g(z) & =c \int_{0}^{1} u^{c} f(u z) d u, 0<c<\infty \\
& =\frac{1}{z}+\sum_{n=1}^{\infty} \frac{c a_{n}}{n+c+1} z^{n} \in \sum_{p}^{*}\left(\frac{1+\alpha}{1+c+\alpha}\right)
\end{aligned}
$$

Proof. Setting $b_{n}=\frac{(n+\alpha)(n+c+1)}{(1-\alpha) c}$, we see that $g \in \sum_{p}\left(\left\{b_{n}\right\}\right)$. Since $\frac{b_{1}-1}{b_{1}+1}=\frac{1+\alpha}{1+c+\alpha}$, it suffices to show that $b_{n} \geq \frac{(n+1) b_{1}+n-1}{2}$, which is equivalent to $n^{2}-1 \geq 0$.

REMARK. When $c=1$ and $\alpha=0$, we obtain the results of $[1,6]$.

Corollary 2. Let $b_{n}=(1-\delta) n+\delta n(n+1)$. Then $\sum_{p}\left(\left\{b_{n}\right\}\right) \subset$ $\sum_{p}^{*}\left(\frac{1}{2+\alpha}\right)$ for $\delta \geq 0$, and $\sum_{p}\left(\left\{b_{n}\right\}\right) \not \subset \sum_{p}$ for $\delta<0$.

Proof. Since $\frac{b_{1}-1}{b_{1}+1}=\frac{1}{2+\delta}$, Theorem 3 may be applied for $\delta \geq 0$ if $b_{n} \geq \frac{(n+1) b_{1}+n-1}{2}$, which is equivalent to $\delta\left(2 n^{2}-n-1\right) \geq 0$. If $\delta<0$, then $b_{1}=1+\delta<1$, so we see from Theorem 1 that $\sum_{p}\left(\left\{b_{n}\right\}\right) \not \subset \sum_{p}$.

4. Other extremal functions

The next theorem gives a coefficient condition for which other extreme points represent the extremal function.

Theorem 4. If $b_{n} \geq \frac{(n+1) b_{k}+n-k}{k+1}$ for a fixed integer k and for every n, then the order of meromorphically starlikeness of $\sum_{p}\left(\left\{b_{n}\right\}\right)$ is $\frac{b_{k}-k}{b_{k}+1}$, with equality for $f_{k}(z)=\frac{1}{z}+\frac{z^{k}}{b_{k}}$.

Proof. By Theorem 2, we may write $f(z)=\frac{1}{z}+\sum_{n=1}^{\infty}\left(\frac{\lambda_{n}}{b_{n}}\right) z^{n}$ where $\sum_{n=1}^{\infty} \lambda_{n} \leq 1$. We must show, for $\alpha=\frac{b_{k}-k}{b_{k}+1}$, that $\sum_{n=1}^{\infty} \frac{(n+\alpha) \lambda_{n}}{(1-\alpha) b_{n}} \leq 1$. But $\frac{n+\alpha}{1-\alpha}=\frac{(n+1) b_{k}+n-k}{k+1} \leq b_{n}$ by hypothesis, so that $\sum_{n=1}^{\infty} \frac{(n+\alpha) \lambda_{n}}{(1-\alpha) b_{n}} \leq$ $\sum_{n=1}^{\infty} \leq 1$, and the proof is complete.

Corollary. If $b_{n}>\frac{(n+1) b_{k}+n-k}{k+1}$ for every $n \neq k$, then $\sum_{p}\left(\left\{b_{n}\right\}\right) \subset$ $\sum_{p}^{*}\left(\frac{b_{k}-k}{b_{k}+1}\right)$, with equality only for $f_{k}(z)=\frac{1}{z}+\frac{z^{k}}{b_{k}}$.

Proof. It suffices to show, for $\alpha=\frac{b_{k}-k}{b_{k}+1}$, that $\sum_{n=1}^{\infty}\left(\frac{n+\alpha}{1-\alpha}\right) \frac{\lambda_{n}}{b_{n}}<1$ if $\lambda_{k} \neq 1$. Assume $\lambda_{m}>0$ for some $m \neq k$. Since $b_{m}>\frac{m+\alpha}{1-\alpha}$ by hypothesis, we have

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(\frac{n+\alpha}{1-\alpha}\right) \frac{\lambda_{n}}{b_{n}} & =\left(\frac{m+\alpha}{1-\alpha}\right) \frac{\lambda_{m}}{b_{m}}+\sum_{n \neq m}\left(\frac{n+\alpha}{1-\alpha}\right) \frac{\lambda_{n}}{b_{n}} \\
& \leq\left(\frac{m+\alpha}{1-\alpha}\right) \frac{\lambda_{m}}{b_{m}}+\sum_{n \neq m} \lambda_{n} \\
& <\lambda_{m}+\sum_{n \neq m} \lambda_{n} \leq 1
\end{aligned}
$$

Remark. Above Corollary shows that the function $f(z)=\frac{1}{z}+\sum_{n=1}^{\infty}$ $\left(\frac{\lambda_{n}}{b_{n}}\right) z^{n}$ in $\sum_{p}\left(\left\{b_{n}\right\}\right)$ is meromorphically starlike of order greater than $\alpha=\frac{b_{k}-k}{b_{k}+1}$, unless $\lambda_{k}=1$.

Example. Let $b_{n}=2 n, n \neq 2$ and $b_{2}=3$. Then $b_{n}>\frac{(n+1) b_{2}+n-2}{3}$ for $n \neq 2$, so that the order of meromorphically starlikeness of $\sum_{p}{ }^{3}\left(\left\{b_{n}\right\}\right)$ is $\frac{1}{4}$, with unique extremal function $f_{2}(z)=\frac{1}{z}+\frac{z^{2}}{3}$.

The final property we determine for the class $\sum_{p}\left(\left\{b_{n}\right\}\right)$ is the radius of meromorphically converxity.

Theorem 5. If $f \in \sum_{p}\left(\left\{b_{n}\right\}\right)$, then f is meromorphically convex in the disk

$$
|z|<\gamma_{o}=\inf _{n}\left(\frac{b_{n}}{n(n+2)}\right)^{\frac{1}{n+1}} \quad(n=1,2, \cdots)
$$

The result is sharp, with extremal function of the form $f_{n}(z)=\frac{1}{z}+\frac{z^{n}}{b_{n}}$ for some n.

Proof. For $f(z)=\frac{1}{z}+\sum_{n=1}^{\infty}\left(\frac{\lambda_{n}}{b_{n}}\right) z^{n}$, it suffices to show that $\mid 2+$ $\left.\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \right\rvert\, \leq 1$ for $|z| \leq \gamma_{0}$. We have

$$
\begin{aligned}
& \left|2+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|=\left|\frac{\sum_{n=1}^{\infty} n(n+1) \frac{\lambda_{n}}{b_{n}} z^{n-1}}{\frac{1}{z}-\sum_{n=1}^{\infty}\left(\frac{n}{b_{n}}\right) \lambda_{n} z^{n-1}}\right| \\
& \quad \leq \frac{\sum_{n=1}^{\infty} n(n+1)\left(\frac{\lambda_{n}}{b_{n}}\right)|z|^{n+1}}{1-\sum_{n=1}^{\infty}\left(\frac{n}{b_{n}}\right) \lambda_{n}|z|^{n+1}}
\end{aligned}
$$

which is bounded above by 1 , if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n(n+2) \frac{\lambda_{n}}{b_{n}}|z|^{n+1} \leq 1 \tag{*}
\end{equation*}
$$

Since $\sum_{n=1}^{\infty} \lambda_{n} \leq 1$, inequality (*) is true for $|z| \leq \gamma_{o}$.

References

1. S. K. Bajpai, A note on a class of meromorphic univalent functions, Rev, Roumanie Math. Pures Appl. 22 (1977), 295-297.
2. J. Clunie, On meromorphic schlicht functions, J. London Math. Soc. 34 (1959), 215-216.
3. R. M. Goel and N. S. Sohi, On a class of meromorphic functions, Glasnik Matematicki 17 (1981), 19-28.
4. O. P. Juneja and M. L. Mogra, On starlike functions of order α and type β, Rev. Roumaine Math. Pures Appl. 23 (1978), 751-765.
J. E. Miller, Convex meromorphic mappings and related functions, Proc. Amer. Math. Soc. 25 (1970), 220-228.
5. M. L. Mogra, T. R. Reddy and O. P. Juneja, Meromorphic univalent functions with positive coefficients, Bull. Austral. Math. Soc. 32 (1985), 161-176.
6. Ch. Pommerenke, On meromorphic starlike functions, Pacific J. Math. 13 (1963), 221-235.
7. W. C. Royster, Meromorphic starlike multivalent functions, Trans. Amer. Math. Soc. 107 (1963), 300-308.
8. H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.
9. B. A. Uralegaddi and M. D. Ganigi, A certain class of meromorphically starlike functions with positive coeffcients, Pure and Applied Math. Sci. 26 (1987), 75-81.

Department of Applied Mathematics
National Fisheries University of Pusan
Pusan 608-737, Korea

[^0]: Received March 16, 1991.

