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BANACH SPACES OF THE TYPE Qs

YOUNG SIK PARK

o. Introduction

This paper is to study the Banach spaces of analytic functions of the
type Qs' Spaces of the type Q~ include as a special case, the space
of Fourier ultrahyperfunctions and can be characterized by the Fourier
transformation.

As far as we know the study of Fourier transforms and differential
operators(local or nonlocal) has been focused for the inductive limit and
projective limit of the Banach spaces Qs(T(K); K'). For example, the

. +--
spaces Q(Cn) Park-Monmoto [8], Q(Rn) Park [9], Qs(T(U); U') and
Qs(T(K); K') Sargos-Morimoto [5] are studied for their Fourier trans­
forms and differential operators(local or nonlocal) on them.

When we take inductive limit and projective limit, there were merits
such that theorems for the spaces of them could be described beautifully.
However, there were so many difficulties for the spaces QsCT(K); K') to
describe theorems.

In this paper, we formulate theorems for the Banach spaces QsCT(K);
K') elegantly to overcome such difficulties. Also we, as for limit, define
the new space Qs(T(K);Rn) and inspect properties of the space.

In Sec.I, we give the main notations and necessary definitions. In
Sec.2, we introduce and study spaces of the type Qs and their duals Q~,

in particular, the space of Fourier ultrahyperfunctions Q'(C n ) described
in Park-Morimoto [8]. In Sec.3, we show that the Fourier transfomation
is defined and maps a space of the type Qs into a space of the type Qs;
this enables us to define the Fourier transformation in spaces of the type
Q~ as well. In SecA, we give several results concerning the density of

+--
the space Qs(Cn) in the spaces of the type Qs. In Sec.5, we investigate
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the connection between entire functions of infra-exponential growth and
differential operators(local or nonlocal) in spaces of the type Qs'

1. Definitions and notations

We shall use the following notation:
x, y,~, TJ, •.. are points of the n-dimensional real space Rn with scalar

product x~ and the Euclidean norm IIzll = VXXi z = x + iy, ( = ~ +
iTJ,'" are points of the n-dimencional complex space en with bilin­
ear form z( = (x~ - Y17) + i(xTJ + ~y) and the Euclidean norm IIx ll =

_ 0

v'xx + yy. M, M, chM are the closure, interior, and convex hull of the
o

set M c Rn.Ml @ M2 means that the set M l is bounded and Ml C M 2 •

T(M) = Rn + iM = {z = x + iy : y€M} is the horizontal band in en
over the set M C Rn. Let K,K',L,L' be convex compact sets in Rn
with nonempty interior and U, U' be convex open sets in Rn.

We define the nega-support function WM of the set M C Rn by the
equation

We enumerate the most important properties of the nega-support
function : for the region M C Rn,

(a) WM = WchM = Wo = WMi
M

(b) W K is a continuous, concave, and homogeneous function in Rn;
(c) WK+L = WK +WLi
(d)WL ~ WK for every KC L;
(e) WL(O + cl~1 ~ WK(~), for every K @ L there exists c> 0;
(f) WK + W-L ~ 0 for every K C L;
(g) WK(~ - ~') :5 WK(~) - WK(e'):5 -W-K(~ - e').
We recall that the support function SM of the set M C Rn is defined

by the equation SM(~) = sup{-ye : y E M}. Hence we have WM =
-sM·

We define the exponential eiz as the function defined by the equation
eiz«() = eiz

,; thus, eiz is a function of the (E en) which dependes on
the parameter z(E en).

Spaces of the type Q s are spaces on which the exponentials eiz deter­
mine the Founer transformation :F (by the equation :F[</>]( z) = (eiz

, 4» =
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Jeiz(€+if/)</J(e + i7J)dn e, </J is a test function) and in such a way that :F

maps a space of the type Q 8 into a(possibly different )space of the type
Q8·

2. The space Qs(T(K); K'), and spaces of the type Qs

We denote by Q8(T(K); K') the Bananch space consisting of all func­
tions </J which are continuous on T(K) and holomorphic in the interior

o
T(K) of T(K) and have the finite nonn

(2.1) II</JIIK,K' = sup{e-WK1(x)I</J(z)l: z = x + iy E T(K)},

The space Q8(T(K); K') is endowed with the topology determined by
this nonn(we recall once more that KeRn and K' C Rn are convex
compact sets with nonempty interior) (cf. [9]).

Suppose L C K, L' C K', then obviously the restriction mapping
defines the natural embedding mapping

(2.2) i~!'L' : Q8(T(K);K') ---+ Q8(T(L)jL').

If L <E K, L' <E K', the mapping i~!'L' is a compact mapping. The
mapping i~!'L' enables us to construct inductive and projective limits of
the spaces Q8(T(K); K'). We define

(2.3) Q8(T(0); (0)) = ind lim Q8(T(K); K')
{O}<SK
{O}<SK'

We denote the space Q8(T(0); (0)) by Q8(Rn). It is the space of infra­
exponential real analytic functions which is the inductive limit of the
spaces Q8(T(K); K') with respect to all pairs K 3l {O}, K' 3l {O}. Note
that Kawai [10](resp. Zharinov [6]) uses for the space Q8(Rn) the nota­
tion Q(D n

) (resp. i). Obviously, we can restrict ourselves to the pairs
K = K' = {e : lel ::; p} == f)p, P -t o. Thus, the function </J belongs
to Q8(Rn) if there exists p > 0 such that </J is continuous on TeUp ) and
holomorphic in the interior T(Up ) and that 1</J(z)1 ::; Cexp(-pllxll) for
some constant C > o.



216 Young Sik Park

Because the mapping i1}h, is compact, the space Qs(Rn) is of the
type (DFS) with the locally convex inductive limit topology. Therefore,
the dual space Q~(Rn) is the space of the type (FS), and

(2.4) Q~(Rn) = proj limQ~(T(K);K')
{O}~K

{O}CK'

is the projective limit of the Banach spaces Qs(T(K); K') dual to the
corresponding spaces Qs(T(K); K').

We require the space

(2.5)

which is the projective limit of the spaces Qs(T(K)j K') with respect
to all pairs K € Rn, K' € Rn. Once more, it is sufficient to restrict

- +--
ourselves to pairs K = K' = Up, P --t 00. Thus, the function <P E Qs(Cn)

if it is entire and 11<pllo 0 < 00 for all p > O. Recall Q:(Cn ) is denoted
p. p

by Q(Cn ) in [8]. Once more, since the mapping i1}!'v is compact, the
+-- +--

space Qs(Cn) is of type (FS), the dual space Qs'(Cn) is of type (DFS)
and

(2.6) Q'(en) = ind lim Q' (T(K)' K')
s KfiiRn s ,

K'~Rn

is the inductive limit of the spaces Q~(T(K)j K'). The elements of the
+--

dual space Qs'(Cn ) are called the Fourier ultrahyperfunctions in the
Euclidean n-space(see [8]).

For convex compact sets L and L' with nonempty interior and for
open convex sets U and U' of Rn, we put

(2.7)

(2.8)

Qs(T(L)j L') = ind lim Qs(T(K)j K'),
Lf6K
L'fiiK'

+--
Qs(T(U); U') = proj limQs(T(K)j K')

Kf6U
K'f6U'
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The spaces Qs(T(K); K') and the spaces obtained from them by means
of the inductive and projective limits will be called here spaces of the
type Qs; their dual spaces will be called of the type Q~.

3. The Fourier transfomation on spaces of the type Qs and
Q~

We define the Fourier tranform of a function 4> E Qs(T(K); K') to be
the function F[4>J defined by

(we emphasize that here "l is fixed point in K). Elementary arguments
show that for any z = x + iy E T(K') the integral on the right is defined
and that its value does not depend on the choice of"l E K. Therefore,
the function F[4>J is defined in T(K'). Moreover, it is easy to show that
for all L € K,L' € K' we have

F[4>J E Qs(T(L');-L),and /IF[4>J/lLI,-L::; C/l4>IIK,KI,

where the constant C > 0 does not depend on 4> E Qs(T(K); K'). Hence
we have the following thorem:

THEOREM 3.1. Suppose that L, K, L', K' are convex compact sets in
Rn with nonempty interior and that L € K, L' € K'. Then the Fourier
transformation F is a continuous linear mapping:

Qs(T(K); K') -t Qs(T(L'); -L).

Suppose further 'ljJ = F[4>] E Qs(T(L'); -L). Then the function 4> can
be uniquely recovered by means of the formula

Thus, F-1 ['ljJ](O = (2 1r )-nF['ljJ](-O E Qs(T(M);M') for all M € L €
K,M' € L' € K'. Hence, for the inverse Fourier transformation, we
have the followings:
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THEOREM 3.2. Suppose that M, L, M', L' are convex compact sets in
Rn with nonempty interior and that M e L, M' e L'. Then the inverse
Fourier transfonnotion F-1 is a continuous linear mapping:

Qs(T(L'); -L)~ Qs(T(M); M').

THEOREM 3.3. Suppose that M, L, K, M', L', K' are convex compact
sets in Rn with nonempty interior and that M e L e K, M' e L' e K'.
Then the composite mapping F-1 0 F of

:F: Qs(T(K); K')~ Qs(T(L'); -L) and

:F-1
: Qs(T(L'); -L)~ Qs(T(M);M')

is equal to the canonical mapping

The Fourier transformation defined on Qs(T(K);K') can be trans-
.... +--

ferred to the spaces Qs(T(L)j L') and Qs(T(U); U'), and we have the
followings:

COROLLARY 1. The Fourier transformation :F gives topological iso­
morphisms:

:F: Qs(T(L); L') ~ Qs(T(L'); -L),

F- 1
: Q:(T(U); U') ~ Q:(T(U'); -U).

The Fourier thansformation F introduced in the space Qs(T(K); K')
generates in the dual Q~(T(K);K') a dual transformation, which, fol­
lowing tradition, we shall also call a Fourier transformation and denote
by :F. Namely, for y E Q~(T(K)j K') we define :F[g] by the equation

(F[y], 4» = (y, :F[4>]) ,for every 4> such that :F[4>] E Qs(T(K); K').

Obviously, :F[y] E Q~(T( -J'); J) under the condition that K e J, K' e
J'. Thus we have the following theorem:
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THEOREM 3.4. Suppose that K, J, K', J' are convex compact sets in
Rn with nonempty interior and that K E J, K' E J'. Then the Fourier
transfomation F is a continuous linear mapping:

Q~(T(K);K') -+ Q~(T(-J'); J).

The Fourier transformation introduced on Q~(T(K);K') can be trans­
ferred to the inductive and projective limits of such spaces. The inverse
Fourier transfomation F-1 can also be defined in a natural manner.

THEOREM 3.5. Suppose that J, F, J', F' are convex compact sets in
Rn with nonempty interior and that J E F, J' E F'. Then the inverse
Fourier transformation F-1is a continuous linear mapping:

Q~(T(-J'); J) -+ Q~(T(F);F').

THEOREM 3.6. Suppose that F, J, K, F', J', K' are convex compact
sets with nonempty interior and that K E J @ F, K' @ J' E F'. Then
the composite mapping F-1 0 F of

F : Q~(T(K); K') -+ Q~(T(-J); J),

F- 1
: Q~(T(-J'); J) -+ Q~(T(K);K')

is equal to the cononical mapping

i~Jf,' : Q~(T(K); K') -+ Q~(T(F);F').

COROLLARY 2. The Fourier transformation F gives linear topological
isomorphisms:

F: Q~(T(L);L')~ Q~(T(-L');L),
t-- t--

F: Qs(T(U); U') ~ Qs(T(-U'); U).

In particular, the Fourier transformation dennes topological isomor-
... +-

phisms of the spaces Q~(Rn) and Qs'(Cn) onto themselves.
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4. A number of .results concerning the density of the space
+-- •
Qs(Cn) In spaces of the type Qs

We denote by Qs(T(K); Rn) the set of all functions </> continous
o

on T(K) and holomorphic in the interior T(K) of T(K), for which
!I</>!IK,K' < 00 for all convex compact sets K' c Rn with nonempty
interior.

PROPOSITION 4.1. The space Qs(T(K); Rn) is the projective limit
of the spaces Qs(T(K); K'), where the projective limit is taken for all
convex compact sets K' of Rn, that is,

(4.1)

We shall also assume everywhere that L € K and L' € K'. Then we
have the following relations:

PROPOSITION 4.2. The space Qs(T(K); Rn) is dense in the space
Qs(T(K); K') in the toplolgy of the space Qs(T(L); L').

Proof. For every </> E Qs(T(K); K'), we set </>k(() = exp(_k-1(2)</>(0,
where (2 = (C. It is easy to show that </>k E Qs(T(K);Rn) for all
k = 1,2"" and !I</> - </>K!lL,L' converges to 0 as k ---. 00, i.e., </>k ---. </> in
the topology of Qs(T(L);L').

We define

(4.3)

(4.4)

Qs(T(K); {O}) = ind limQs(T(K); K'),
{O}IEK'

Qs(Rn; K') = ind lim Qs(T(K); K')
{O}IEK'

Under the condition {O} € L € K, we have the following relations:
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+-- ...
PROPOSITION 4.3. TbespaceQs(Cn) is dense in tbe space Qs(Rn; K').

Proof. Put, for e > 0,

ge(X) = (27l")-n/2e - nexp(-(x~ +... +x;)/2e2
)

Then ge(z)eQ:(Cn). Let </J E Qs(Rn)jK'). As </J(O is decreasing when
lel -. 00«( = e + ie1]), the convolutions

ge * </J(e + i1]) = f ge(X + iy)4>«e + i1]) - (x + iy»dxJRn
= f ge(XI+iyI,'" ,Xn+iYn)</J«6-xI)+i(1]I-YI),.'"JRn

(en - xn) + i(1]n - Yn»dXI ... dX n

are entire functions and 11ge * </Jllop,op < 00 for all p > O. Hence ge * </J E
+--
Qs(Cn) for any c > O. On the other hand,

11ge * 4> - </Jllop,K' ~ 0 as e~ 0 for all p > O.

+--
PROPOSITION 4.4. Qs(Cn) is dense in Qs(T(K)j Rn) in the topology

of Qs(T(L)j L').

This is obtained from the foregoing by means of a Fourier transfor­
mation.

+--
PROPOSITION 4.5. Qs(Cn) is dense in Qs(T(K);K') in the topology

of Qs(T(L)j L').
+--

This follows from Qs(Cn) being dense in Qs(T(K); Rn) and Qs(T(K)j Rn)
+-- ... ...

in Qs(T(K); K') (or Qs(Cn) in Qs(Rn;K') and Qs(T(K)j K') c Qs(Rnj K'».
+-- ...
QsCCn ) is dense in QsCRn

), which follows from the foregoing.

5. Entire functions of infra-exponential growth and differ­
ential operators(local or nonlcoal)

We shall denote by a = (aI, ... ,an) a multi-index;
lod = al + .. '+an, a! = al!'" an!, ZOl = Zfl ... z;:n for z = (Zl,'" ,zn),
DO:</J(z) = 8 iO:I4>(z)/8zfl ... 8z;:n, etc.
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DEFINITION [1]. An entire function J(z) is said to be a function of
infra - exponential growth if for any 6 > 0 there exists C ~ 0 such
that

IJ(z)1 $ Cexp(ellzll)

for all z E cn.
It is easy to show that if J(Z) is an entire function of infra-exponential

growth then operation of multiplication by J (z) defines a continous linear
mappmg

J(z): Qs(T(L);K') ---+ Qs(T(L);L')

for every pair L,L' and K' with L' € K', and, therefore, J(z) is a
multiplier in the space Qs(Rn

), i.e.,

is continuous and linear.
Suppose J(z) = L aaza is the Taylor series expansion of an entire

a~O

function J(z).
The differential operator J( -iD) is defined by the equation

J( -iD)</>(() = L aa(-iD)a</>(() = L aa(_i)laID°</>((),
0~0 0~0

where </> is a sufficiently smooth function.
The diffrential operator J( -iD) is said to be local if the function

J(z) = L aoa!za is entire, i.e., lim ''Wlaola! = O.
10 1-+00

a~O

J( -iD) is a local differential operator if and only if J(z) = L aoz o

a>O

is an entire function of infra-exponential growth(see [1] or [6]). -

THEOREM 5.1. H J( -iD) is a local operator then

J( -iD) : Qs(T(K); L') ---+ Qs(T(L); L')

is continuous and linear, for every pair L, L' and any L € K. Therefore,
we have the following:
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COROLLARY 5.1. H J( -iD) is a local operator then

is a continuous linear differential operator.

223

If J( -iD) is a local operator and if>t:.Qs(T(K)j K'), then .r[J(-iD)if>](z)
= J(z )if>(z). Further, let J( -iD) be a differential operator and 9 an
analytic functional. The analytic functional J(iD)g is defined by the
equation

(J( iD)g, if» =(9, J( -iD)if».

If J( -iD) is a local operator then the dual mapping is defined:

Suppose J( z) = exp( -az), a E en, then J( -iD) = exp(iaD) is a non­
local differential operator. For every if> E Qs(T(K)j K'), J( -iD)if>(() =
if>(( +ia). Hence we have the following:

THEOREM 5.2. Suppose J(z) = exp( -az), at:.en , then J( -iD) is
nonlocal and

J(-iD): Qs(T(K);K')~ Qs(T(K + {Re a};K')

is a continuous linear differential operator.

n

THEOREM 5.3. Suppose J(z) = L exp( -ajz), aj E en and if Int
j=l

n(K + {Re aj}) -I- 0, then J( -iD) is nonlocal and

n

J(-iD): Qs(T(K)jK') ~ Qs(T n(K + {Re aj}»;K')
j=l

is continuous and linear.
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