NOTES ON INFINITE LOOP SPACES AND DELOOPING MACHINE OF THE PLUS-CONSTRUCTION

KYU-HYUN SOHN AND SANG-EON HAN

1. Introduction

J.F.Adam [1], R.J.May, S.B.Priddy, J.D.Stasheff and others [7], [9], [11] studied the infinite loop space intensively. In particular, M.G.Barratt and P.J.Eccles [2], [3], [4] studied the infinite loop spaces with the Γ^+ -structure. While, D.G.Quillen defined the plus-construction of a space, furthermore J.B.Wagoner[12], A.T.Berrick[5], [6] and others [8] studied the plus-construction.

Thus, in this paper we shall study the infinite loop space with the plus-construction. Throughout this paper, we shall work in the category of based connected CW-complexes, which is denoted by $\Im op$. And all maps will mean the base point preserving maps unless otherwise stated. We denote the path space of a space X by P(X), the maximal perfect normal subgroup of a group G by PG, and the loop functor by Ω .

2. Preliminaries

In this section, we consider the plus-construction of a space and its properties [5],[6],[12]. First we recall some Definitions.

DEFINITION 2.1. A fibration $F \longrightarrow E \longrightarrow B$ is quasi-nilpotent if the fundamental group $\pi_1(B)$ acts nilpotently on $H_*(F)$.

DEFINITION 2.2. A fibration $F \longrightarrow E \longrightarrow B$ is nilpotent provided that

- (i) its fiber F is connected, and
- (ii) the action of $\pi_1(E)$ on each $\pi_*(F)$ is nilpotent.

A space X is called a **nilpotent space** if the action of $\pi_1(X)$ on each $\pi_*(X)$ is nilpotent.

Received March 2, 1991.

This paper was supported in part by NON DIRECTED RESEARCH FUND. Korea Research Foundation, 1990.

DEFINITION 2.3. A space X is acyclic if $\widetilde{H}_*(X) = 0$, and a map $f: X \to Y$ is acyclic if the homotopy fiber $F_f = X \times_f P(Y)$ is an acyclic space.

Next we describe the acyclic fiber AX of a space X. Take $X_1 = X$, X_2 as a covering space of X with $\pi_1(X_2) = P\pi(X)$, and X_3, X_4, \ldots are constructed by the pull-back as follows; there is a sequence of spaces

$$\cdots \rightarrow X_{n+1} \rightarrow X_n \rightarrow \cdots \rightarrow X_3 \rightarrow X_2$$

such that

- (i) $\widetilde{H}_q(X_n) = 0$ (q < n),
- (ii) $X_{n+1} \longrightarrow X_n$ included form the path fibration $(n \ge 2)$ i.e.

$$\begin{array}{cccc} X_{n+1} & \longrightarrow & P(K(H_n(X_n), n)) \\ \downarrow & & \downarrow & : cartesan & square. \\ X_n & \xrightarrow{\theta} & K(H_n(X_n), n)) & (pull-back) \end{array}$$

(iii) X_n is unique up to fiber homotopy equivalence over X_{n-1} .

Here $K(H_n(X_n), n)$ is the Eilenberg-MacLane space. By AX, we denote the inverse limit space $\varinjlim X_n$. Then AX is an acyclic space and $AX \longrightarrow X_2$ is a nilpotent fiberation [6]. Usually X_n is called **the n-th term** of the acyclic tower of X.

Let X be a space. Then the space X^+ , the plus-construction of X, is constructed as follows[6]; let $p: X' \longrightarrow X$ be a covering space of X with $\pi_1(X') = P\pi_1(X)$. Attach 2-cells and 3-cells to X' to get a simply connected space Y' such that $X' \xrightarrow{f'} Y'$ is an acyclic cofibration. Then we have the acyclic cofibration $X \xrightarrow{f} X^+$ by the push-out

$$\begin{array}{ccc} X' & \xrightarrow{f'} & Y' \\ \downarrow & & \downarrow \\ X & \xrightarrow{f} & X^+ \end{array}$$

with $Ker\pi_1(f) = P\pi_1(X)$. Usually the above map f is denoted by q_X .

Axiomatically we can characterize X^+ by the following statements [6]:

- (a) $(q_X)_*: \pi_1(X) \longrightarrow \pi_1(X^+)$ is an epimorphism with kernel $P\pi_1(X)$
- (b) The action of $\pi_1(X^+)$ on $\pi_n(X^+)$ is trival for each n.
- (c) $(q_X)_*: H_*(X; Z) \longrightarrow H_*(X^+; Z)$ is an isomorphism.
- (d) An acyclic map $f: X \longrightarrow Y$ is equivalent to the map q_x if and only if $P\pi_1(Y)$ is the trivial group.
- (e) $(\Omega X)^{+} = \Omega X$.

By above properties (a) and (d), we can define a map $f^+: X^+ \longrightarrow Y^+$ such that $f^+ \circ q_X = q_Y \circ f$, for any given map $f: X \longrightarrow Y$.

3. Main Theorems

In this section we shall construct the concrete infinite loop space by means of the delooping machine of the plus-construction. We denote the category of commutative rings with unity by \Re . First we recall some Lemmas in [6].

LEMMA 3.1. Suppose that T and U are spaces and O is an acyclic space such that $T_n \to O \xrightarrow{p_{n+1}} U_{n+1}$ is a fiber sequence for some $n \ge 1$. Then the following three conditions are equivalent (see the following diagram):

- (a) p_{n+1} is quasi-nilpotent (and T_n^+ is nilpotent if n=1)
- (b) $q_n: T_n \longrightarrow \Omega U_{n+1}^+$ is acyclic.
- (c) p_{∞} : $O \longrightarrow AU$ is acyclic.

$$\begin{array}{cccc} T_n & \longrightarrow & O & \stackrel{p_{n+1}}{\longrightarrow} & U_{n+1} \\ \downarrow & & \downarrow & & \parallel \\ \Omega U_{n+1}^+ & \longrightarrow & AU & \longrightarrow & U_{n+1} \end{array}$$

LEMMA 3.2. Let $F \xrightarrow{i} E \xrightarrow{p} B$ be a fibration. If p is quasi-nilpotent and F^+ is nilpotent, then $F^+ \xrightarrow{i^+} E^+ \xrightarrow{p^+} B^+$ is also a fibration.

LEMMA 3.3. Suppose $f: X \longrightarrow Y$ is a quasi-nilpotent fibration. Then X is nilpotent if and only if both the homotopy fiber F_f and Y are nilpotent.

From the above Lemmas, we have

THEOREM 3.4. Let $T \longrightarrow O \xrightarrow{p_2} U_2$ be a quasi-nilpotent fibration such that O is acyclic and U_2 is the second term of the acyclic tower of U. If T^+ is nilpotent then $q_n^+: T_n^+ \longrightarrow \Omega U_{n+1}^+$ is a homotopy equivalence for all $n \ge 1$.

Proof. Since p_{n+1} is a quasi-nilpotent fibration and $T^+ = T_1^+$ is nilpotent, $q_n \colon T_n \longrightarrow \Omega U_{n+1}^+$ is acyclic by Lemma 3.1. Thus q_n is a quasi-nilpotent homotopy equivalent map. Therefore we may consider the fiber sequence $F \longrightarrow T_n \stackrel{q_n}{\longrightarrow} \Omega U_{n+1}^+$ such that $\widetilde{H}_*(F) = \widetilde{H}_*(F^+) = 0$. Since $\pi_1(T_n^+)$ is the trivial group (n > 1) and the action $\pi_1(T_n^+) \times \pi_*(T_n^+) \longrightarrow \pi_*(T_n^+)$ is nilpotent, T_n^+ is a nilpotent space. Furthermore, F^+ is also a nilpotent space, by Lemma 3.2, we can make another fiber sequence $F^+ \longrightarrow T_n^+ \longrightarrow (\Omega U_{n+1}^+)^+ = \Omega U_{n+1}^+$ where q_n^+ is also acyclic. Thus q_n^+ is a quasi-nilpotent homotopy equivalent map. Moreover, by Lemma 3.3, ΩU_{n+1}^+ is a nilpotent space and the above map $q_n^+ \colon T_n^+ \longrightarrow \Omega U_{n+1}^+$ is a nilpotent map. Hence q_n^+ is a nilpotent homotopy equivalence. Thus $q_n^+ \colon T_n^+ \longrightarrow \Omega U_{n+1}^+$ is a homotopy equivalence.

COROLLARY 3.5. If $S: \Re \longrightarrow \Re$ and $T: \Re \longrightarrow \Im$ op are covariant functors such that for any object A in \Re there is an acyclic space O_A in \Im op and a quasi-nilpotent fibration $T(A) \longrightarrow O_A \longrightarrow T(SA)_2$ with $T(A)^+$ nilpotent. Then there exists an Ω -spectrum

$$\cdots, \Omega^2 T(A)^+, \quad \Omega T(A)^+, \quad T(A)^+, \quad T(SA)_2^+, \quad T(S^2A)_3^+, \cdots$$

That is, $T(A^+)$ is an infinite loop space.

Proof. From the above Theorem 3.4, put $U_2 = T(SA)_2, O = O_A$ and T = T(A). Then there exists a homotopy equivalence $T(A)_n^+ \longrightarrow \Omega T(SA)_{n+1}^+$. Therefore we can make the following Ω -spectrum;

$$\cdots, \Omega^2 T(A)^+, \quad \Omega T(A)^+, \quad T(A)^+, \quad T(SA)_2^+, \quad T(S^2A)_3^+, \cdots$$

Finally we shall prove the following.

THEOREM 3.6. BGLA is an infinite loop space, where A is an object in \Re and B the classifying space functor.

In order to prove the above Theorem 3.5, we need some notations and a Lemma in [6]. Let CA be the ring of locally finite matrices over A, and

 $MA(\subset CA)$ be the two-sided ideal of finite matrices, i.e. those matrices have at most finitely many non-zero entries. Define SA = CA/MA which is called the *suspension ring* of A. Obviously S is a functor from \Re to itself.

LEMMA 3.7. T^+ is nilpotent if and only if $\pi_1(T)/P\pi_1(T)$ is nilpotent and the fibration $T_2 \longrightarrow T \longrightarrow K(\pi_1(T)/P\pi_1(T), 1)$ is quasi-nilpotent.

Proof of Theorem 3.6. Since the fibration

$$BGLA \longrightarrow BGLCA \longrightarrow (BGLSA)_2 = BESA$$

is quasi-nilpotent and BGLCA is an acyclic space, it suffices to prove that $BGLA^+$ is a nilpotent space, because of corollary 3.5. Consider the quasi-nilpotent fibration

$$BEA = (BGLA)_2 \longrightarrow BGLA \longrightarrow K(\pi_1(BGLA)/P\pi_1(BGLA), 1).$$

Then we have that

$$\pi_1(BGLA)/P\pi_1(BGLA) = GLA/EA$$

is a nilpotent group. Therefore, by Lemma 3.7, $BGLA^+$ is a nilpotent space.

References

- J.F.Adams, Infinite loop space, Annal. of Math. Studies, No 90, Princeton U., 1978.
- M.G.Barratt and P.J.Eccles, Γ⁺ -structure-I:A free group functor for stable homotopy theory, Topology 13 (1974), 25-45.
- M.G.Barratt and P.J.Eccles, Γ⁺ -structure-II:A recognition principle for infinite loop spaces, Topology 13 (1974), 113-126.
- 4. M.G.Barratt and P.J.Eccles, Γ^+ -structure-III: The stable structure of $\Omega^n S^n X$, Topology 13 (1974), 139-153.
- A.J.Berrick, The plus-construction and fibration, Quart.J.Math.,Oxford(2) 33
 (1982).
- 6. A.J.Berrick, An approach to Algebraic K-theory, London, 1981.
- J.M. Boardmann and R.M.Vogt, Homotopy invariant algebraic structures on topological spaces, Lec. Notes in Math. No.347, Springer, 1973.
- 8. W.Brower, Algebraic K-theory with coefficients Z/P, SLN No.657, 1978.

- 9. G.E.Carlsson, R.L.Cohen and W.C.Hsiang, The homotopy of the spaces of pseudo-isotopies, preprint.
- 10. Z.Fiedorowicz, A note on the spectra of algebraic K-theory, Topology 16 (1977).
- 11. J.D.Stasheff, Infinite loop spaces on historical survey, SLN 196, 1971.
- 12. J.B. Wagoner, Delooping classifying spaces in Algebraic K-theory, Topology 11 (1972).

Department of Mathematics Education Chonnam National University Kwangju 500-757, Korea and Department of Mathematics Honam University Kwangju 502-260, Korea