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AN EXACT SEQUENCE IN THE UNITARY

EQUIVALENT COBORDISM THEORY

HONG JAE LEE, IN Su KIM AND KYU HYUN SOHN

The cobordism theory was introduced by R. Thorn in his earlier
paper "Quelques proprietes globales des varietes di:£rerentiables, Com­
ment. Math. Helv. 28 (1954) pp. 17-8". Later P.E. Conner and E.E.
Floyd applied the cobordism theory to study differentiable manifolds
with structure groups in four papers which were published during 1964­
1966. The equivalent cobordism theory is a result of P.E. Conner and
E.E. Floyd. Moreover, the bordism theory and the cobordism theory are
deeply related to each other in spite of the difference of their definitions
([1], [2], [4]). It is also well-known that the cobordism theory is applied
to the index theory of Atiyah-Singer.

The purpose of this paper is to prove an exact sequence which is
induced from the unitary equivalent cobordism theory and a new idea
in Definition 3 (Theorem 5).

Throughout the paper we assume that G is a compact Lie group. Let
D(G) be the category consisting of all topological G-spaces with base
points and all base point preserving continuous G-maps ([5]). For X, YE
Obj(V(G» by [X, Y]~ we mean the set of all base point preserving
G homotopy classes, where io,!I : X ~ Y in Morph(V( G» are G­
homotopic if there exists a homotopy it : X ~ Y in Morph( D( G» for
each t E [0,1] = I. In particular, I is in Obj(D(G» with the base point
o and the trivial G-action (V t E land Vg E G,g· t = t).

For a G-space X E Obj(D(G» with its base point Xo we put

ex = x x lj(xo xl U X x 0)

which is called the cone of X and

SX = X x Ij(xo x luX x {D, I})
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which is called the suspension of X. For amorphism f : X -- Y in
Morph(V(G» we define

C,=Xx]UY/",

where (x,l) '" I(x), (xo,t) '" VO, (x,O) '" VO for x E X, the base point
x°of X and the base point VO of Y. Then there exist the inclusion

a(f) : Y ----+ Cf

and the projection

b(f): Cl ----+ Cf/a(f)(Y) = SX.

The constant map c: X __ Y in Morph(V(G» is denoted by [cl = °in
[X, Y]~. The [X, Y]~is in Obj(V(G», where the topology of [X, Y]~ is
the compact-open topology and °is the base point of [X, Y]~.

For each morphism f: X ----+ Y in Morph(V(G», the Barratt-Puppe
sequence is

(a):X -L Y ~CI ~ SX~ SY -- ...

and for each W E Obj(V(G» the sequence

[(a) : Wl~ : [X, W]~ +- [V, W]~ +- [Cf' Wl~ +- [SX, Wl~ +- ...

is exact ([3J, [5]).
For each I : X ----+ Y E Morph(V(G» we define

E f = ((x,w) E X x PYI/(x) = w(l)},

where PY = {w : ] -- Ylw(O) = VO (base point of Y) and w is
continuous} (note that w is not necessarily a G-map). Then Ef is a
G-space with product topology and (xo, 0) as the base point where Xo is
the base point of X and Q(t) = Yo for all t E 1. The action of G on El is
g(x,w) = (gx,gw) where 9 E G, (x,w) E Ef and gw = {gw(t)lt E [O,l]}.
Then, it is well-known that

if ,
Ef -- X ----+.y

is a fibration where j I : E f -- X is defined by j I((x, w» = x which is
a G-map.
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LEMMA 1. Let X E Obj(V(G)) be (n-l)-connected and f : X -+ Y
be in Morph(V(G)). HCf(E Obj(V(G))) is (m-l)-connected and WeE
Obj(V)(G))) is a connected CW-complex with dim W = r ~ n + m - 2
then

[W,X]~ ~ [W,Y]~ am [W'Cf]~

is exact. Moreover, ifY E Obj(V(G)) is (I-I)-connected with dim W =
r ~ I + n - 1 then

lW, X]~ ~ lW, Y]~ a.5!J; lW, Cf]~ bQ!; lW, SX]~ -+ ...

is exact ([3]).

Proof. We shall sketch this proof as follows. Since

E
io(f) Y a(f) C

a(f) -+ -+ f

is a fibration we have the exact sequence

([3]). Define
p: X -+ Ea(f) by p(x) = (f(x),w x ),

where w x : I -+ C f is defined by w x ( t) = (1 - t, f (x)) E Cf for t E [0, 1].
Then, in our case, P : X -+ Ea(f) is (m+n-2)-connected, i.e.,

where

Hi(p) and 7l"i(p) are isomorphisms

Hi(p) and 7l"i(p) are surjective

ifi < m + n - 2

if i ~ m + n - 2.

Hence p. : lW, X]~ -+ lW, Ea(nl~ is surjective and thus

lW, X]~ ~ lW, Y]~ ~ lW, Cf]~
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is exact. Similarly, for the cofibration

we have the exact sequence

[W,Y]~ a.Y!; [W,Cf]~ (~. [W,SX]~

because that Y is (l-1)-connected, SX is n-connected and dim W = r ~
n + 1- 1. Repeating this way we have the exact sequence

[W, X]~ ~ [W, Y]~ ---+ [W; Cf]~ ~ [W, SX]~ ---+ ....

For any X and Y in Obj(V(G» the wedge product of X and Y is defined
by

X V Y = {(x, Yo)lx E X} U {(xo, y)ly E Y}

where Xo is the base point of X and Yo the base point of Y, and the
smash product of X and Y is

X I\Y=X xYjXVY.

It is clear that if for X, Yt, Y2 and Ya in Obj(V(G»

is exact then for any Z E Obj(V(G»

(*) [X, Y1 1\ Z]~ ---+ [X, Y2 1\ Z]~ ~ [X, Ya 1\ Z]~

is also exct.
Let V(k) be a k-dimensional-complex G-vectorspace, and let Bn(V(k»

be the Grassmann manifold consisting of all n-dimensional subspaces of
V(k)(n ~ k). For each WE Bn(V(k» and 9 E G we define

g. W = {gvlv E W}
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then Bn(V(k» is a differentiable G-space ([5]). We put

En(V(k» = {(W,w)jW E Bn(V(k»,w E W}

and define
g(W,w) = (gW,gw).

Then it is clear that

1r: En(V(k» -+ Bn(V(k» by 1r(W,w) = W

is a differentiable G-vector bundle with dimension n. We define the
one-point compactification

En(V(k» U {co} = Mn(V(k»(E Obj(V(G»)

which is called the Thom space of 1r : En(V(k» ---+ Bn(V(k». Let

i(k, I) : V(k) ---+ V(l) (k ~ I)

be the inclusion, then {En(V( k», i(k, I).} is an inductive limit system.
We put

En(G) = limEn(V(k».
--+

k

Let
M(i(k,l).): Mn(V(k» -+ Mn(V(k» (k $1)

be induced form

i(k, I). : En(V(k» -+ En(V(I».

Then {!lfn(V(k», M(i(k, I).)} is an inductive limit system, and thus we
put

Mn(G) = ~Mn(V(I».

k

We also define the G-isomorphism

s(k) : V(k) Ef1 V(k) ---+ V(2k)
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s(k)«vt,'" ,vk)E9(wt,'" ,Wk)) = (vt,· .. ,Vk,Wt,'" ,Wk).
The injective linear G-map

s(k,I): V(k) El) V(I) --+ V(2k + 21)

is defined by the composition s(k + 1) 0 (i(k, k + 1) El1 i(l, k + 1)).
For the G-vector bundle morphism

a(V(k), V(I) : Em(V(k)) X En(V(I)) --+ Em+n(V(k) El) V(I))
by

a(V(k), V(I))«W1 ,WI) X (W2,W2)) = (W1 El1 W2,WI El1w2)
we define the G-vector bundle morphism

a(k, I) : Em(V(k)) X En(V(I)) --+ Em+n(V(2k + 21))
by the composition s(k, 1)* oa(V(k), V(1)), where s( k, 1)* is induced from
s(k, I). Moreover, the G-vector bundle morphism a(k,l) induces the G­
vector bundle morphism

am,n: Em(G) X En(G) --+ Em+n(G)
and am,n induces the G-map

M(am,n) : Mm(G) 1\ Mn(G) --+ Mm,n(G).
It is obvious that there exists the inclusion

i(k) : V(k)C = V(k) U {oo} (~S2k) --+ Mk(G)

where k is a non negative integer. The map

C = ck,n : V(k)C 1\ Mn(G) --+ Mn+k(G)
is defined by the commutative diagram :

Elt n

V(k)C 1\ Mn(G) . I Mn+k(G)

'~ ~~
Mk(G) 1\ Mn(G)

We also define the G-isomorphism

e = e(k,I): V(k) El1 V(I) --+ V(k +1)

by
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DEFINITION 2. For X, Y E Obj(V(G» and for non negative integers
k and n we put

U'/t(k)(X: Y) = IV(k)C I\X,MHn(G) 1\ YI~,

and for a non negative integer I we define

e(l) : ult(k)(X : Y) --+ ult(k + 1)(X : Y)

by the homotopy class of composition

V(k + lY 1\ X e~l V(IY 1\ V(k)C 1\ X ll\~ V(I)C 1\ Mn+k(G) 1\ Y

~ Mn+Hl(G) 1\ Y

where (I] E U'tt(k)(X : Y). Then {u&n(k)(X : Y), e(l)} is an inductive
limit system ([5]). Then

u&n(x : Y) = lim u&n(k)(X : Y)
--7

k

is an abelian group ([5]) which is called the 2n-dimensional unitary equiv­
alent cobordism group of X and Y with action group G. The unitary
equivalent cobordism theory is defined from the exact sequence [(0:) : W]

We define the natural transformation

by the homotopy class of the composition

V(k)C 1\ X -L Mn+k(G) 1\ V(IY 1\ Y ~ V(IY 1\ Mn+k(G) 1\ Y

~ Mn+k+l(G) 1\ Y

where [I] E u&n(x : V(I)C 1\ Y) and T(x 1\ y) = Y 1\ x ([5]). It is clear
that the diagram

17.(1)
u&n(x : V(l)C 1\ Y) ---+1 u~n+21(k)(X:Y)

e(k')1 1e(k')

17.(1)
Ull(k + k')(X : V(l)C 1\ Y) ---+1 U'tt+21(k + k')(X : Y)
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011'-1- "'.

is commutative, and which induces the G-isomorphism

([5]).

DEFINITION 3. For n = 0,1,2, ... we define

where X, YE Obj(V(G)). We put

0": = the identity : fj~n+l(X : Y) ---t fj1i(X : SY).

The G-isomorphism

is defined by the commutative diagram (S2 ~ CC) :

fj'tP(X : Y)

",.(1)-11

fj~n-2(X : S2y) ==== fj~n-2(X : S(SY)).

In consequence we have defined the G-isomorphism

LEMMA 4. For each f: Y ---t Y' in Morph(V(G)) the diagram

U~+I(X : Y)
fT.

U8(X: SY)I

1/. 1(Sf).

fj~+I(X : V')
fT.

I U8(X: SY').
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is commutative, where X E Obj(V(G».

Proof. In the following diagram,
(i) triangles I and II are commutative by Definition 3
(ii) squares III and IV are commutative since 0'.(1)-1 and O'~ are

natural maps :

a.

Ua(X: SY)U;]+I(X : Y)

f. j ~~ I ~ j(S,).
(J.J

\

Ua- 1(X : S2y)
6-

III IV

(SJ ).

U;]+I(X : V')
a.

Ua(X : SY' )

~~ II
~,

fi) U;j-l(X : S2y' )
6-

Therefore (S/). 00'. = 0'.0 i •.
THEOREM 5. Let Y E Obj(V(G» be w-connected. Then, for i :

Y --t Y ' in Morph(V(G)) (Y':connected) and a finite dimensional con­
nected CW complex X in Obj(V(G)), we have the exact sequence

... --t Ua(X : Y) ---+ Ua(X : V') ---+ Ua(X : Cf )

--t U;]+l(X : Y) --t iJ;]+l(X : V') ---+ U;]+l(X : Cf)
- +2---+ U;] (X: Y) --t •.•

Proof. By Lemma 1 (note that dim SkX ::; 00) for some non-negative
integers k, k' and n following diagram is commutative:

U'/P(k)(X: Y) ----t U'/P(k)(X: Y' ) ----t U'/t(k)(X: Cf) : exact

1e(k') © 1e(k') @ 1e(k')

Ub"(k+k')(X:Y) ----t Ub"(k+k')(X:Y') ---+ Ub"(k+k')(X:Cf):exact
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(see(*) above). Thus the sequence

(**) (/tt(X : Y) -+ ffb"(X : Y') -+ u'b"(X : Cf)

is exact. Define

by the composition

_ b(f). _ ~CT: 1 - +l
U(j(X: Cf)~ U(j(X: BY) --+ UG (X: Y).

Then, by Lemma 4 and the above exact sequence (**) it is proved that
the sequence

6 - _ _

... -+ U(j(X : Y) -+ U(j(X : Y') -+ U(j(X : Cf)

li - +1-+ UG (X: Y) -+ ...

is exact.
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